

Welcome

Webinar

Panorama y guía de selección

Sistema de Entradas / Salidas

Agenda

- ▶ Panorama General
- > Sistema Inline
- Sistema Inline ECO
- Sistema Axioline E
- Sistema IO-LINK
- > The modular automation system: basic idea
- Controls
- Bus couplers

Agenda

- Axioline Smart Elements
- > Axioline F: standard modules
- > Axioline F: modules for special environments
- ➤ The modular automation system: solutions
- Scope of applications
- ➤ Axioline P modules for process applications redundancy

I/O-Systems

Panorama General

Inline

The fine-modular entry I/O with high functionality

Axioline F

The fast and robust solution for every application and EX applications

Axioline SE

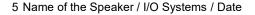
The new solution for compactness applications

Axioline E

The versatile solution for applications outside the cabinet

Axioline P

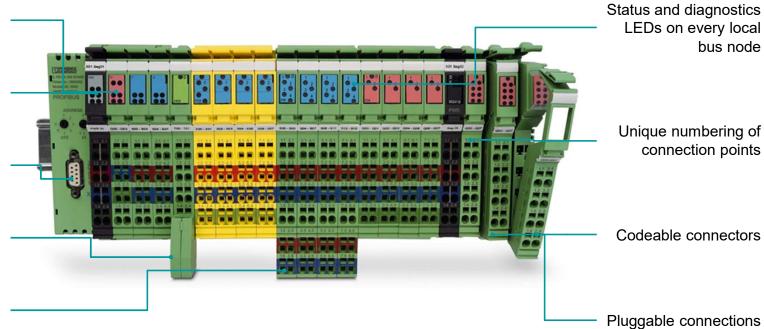
The new system for Profibus PA applications in process



General data

- 10 networks
- More than 250 modules
- Profisafe & SafetyBridge
- Intrinsic safe modules
- Compact PLCs
- fine-modular setup
- -25°C ... 55°C
- -40°C ... 70°C (XC) according IEC 61131-2 from -40 °C to +70 °C successfully tested

Features

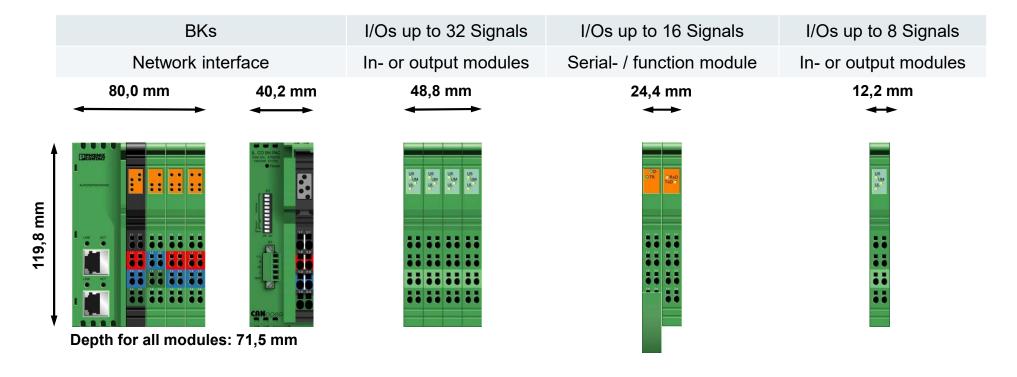

Colored mark for easy identification

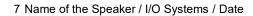
Network and local bus diagnostics LEDs

Network or bus interface

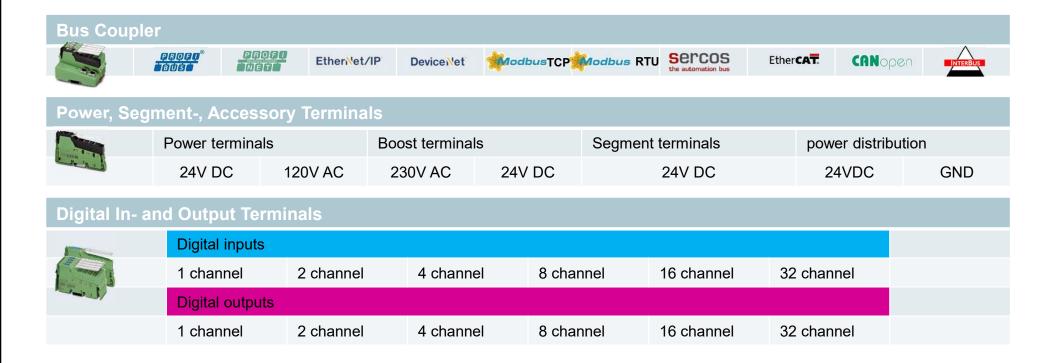
Integrated shielding concept

Colored marks for every connection point

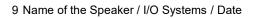




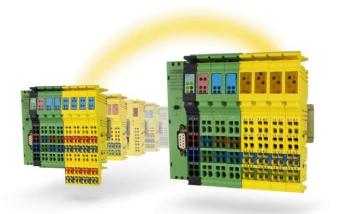
bus node


6 Name of the Speaker / I/O Systems / Date

Housings

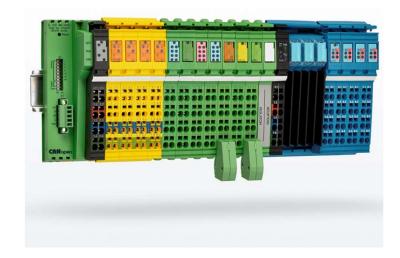


Analogue In- and Output Terminals								
	Analogue inputs			SGI	Analogue outputs			
	2 channel	4 channel	8 channel	2 channel	1 channel	2 channel	8 channel	
	Temperature measurement							
	1 channel (TC)	2 channel (UTH/RTD)	4/8 channel (UTH/RTD)					
Communication terminals								
	Serial communication Master termina			s		System-bus		
The state of the s	RS-232	RS-485	CAN	Profibus	IO-Link	INTERFACE	Fieldline	
Control and measurement terminals								
1. Same	Position	Temperature co	ontrol	Function		Position control	ition control	
A. L.	INC	RTD	UTH	Count	PWM	INC	SSI	

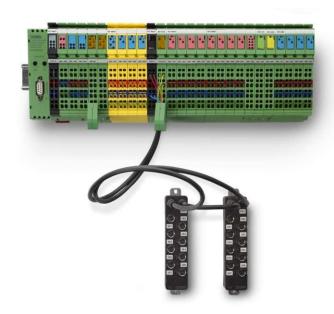


Drives								
1-1	DC Servo controller			AC motor starter				
A	EC-AR			ELR		ML	MLR	
Intrinsic Saf	e Terminals							
	Power	DI/DO	DI/DO		AI/AO		TEMP	
	24V DC	4/4 channel		4/4 channel		4 0	4 channel (RTD/TC)	
Safety Terminals								
	Logic module	Safe I/Os						
	8 outputs	16 inputs	8 inputs		4 relays		4 / 8 outputs	

Safety Bridge

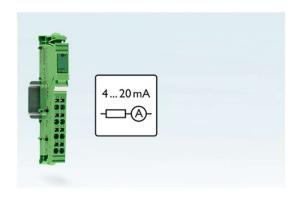

- Safe I/Os and safe logic inside the I/O station
- Network and PLC independent
- Direct access to all data from PLC

Intrinsic safe I/Os


- Digital inputs
- Support of NAMUR sensors (EN 60947-5-6)
- Analogue outputs: 0/4... 20 mA
- Analogue inputs: 0... 10 V; 0/4... 20 mA
- RTD-inputs: Pt 100, etc.
- TC-inputs: J, K, E, etc.
- For sensors in Zone 2, Zone1 and Zone 0

Local bus extensions

- Extension for up to 16 simple IP65 / IP67 I/O modules outside the cabinet
- Flexible extension inside the cabinet with line skip terminal


Inline ECO terminals at a glance

- Ready to use: no parametrization necessary
- Easy to order: one functionality, one article
- Competitive in price: very cost effective terminals

Automation without parameterization

One terminal, one functionality

- Easy handling
- No parameterization required
- Easy exchange

Compatible with all terminals

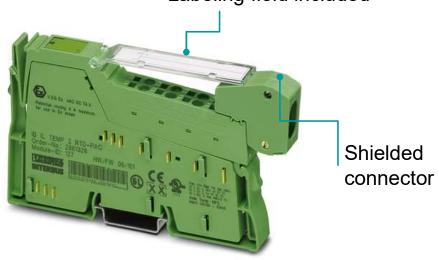
- Can be combined with standard Inline terminals
- High flexibility
- Easy expansion of existing Inline stations

Safety solution

- Easy handling
- No parameterization required
- No safe controller required
- No (safety) software required

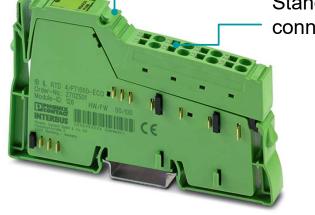
Common features

- Standard connector
- 12,2 mm width (except IB IL SAFE 2-ECO)
- Temperature range 0°C to 55°C
- Diagnostic and status indicators
- Without labeling fields
- Standard UL approval (UL 61010-2-201)



Visible differences

Standard Inline terminal


Labeling field included

Inline ECO terminal

No labeling field included

Digital in- and output terminals

- •8 digital inputs and outputs
- Outputs with 500 mA
- ■1-, 2- or 3-wire technology
- .../EF-ECO approved for safety-related segment circuit

IB IL 24 DI 8/HD-ECO 2702792

IB IL 24 DO 8/HD-ECO 2702793

IB IL 24 DO 4/EF-ECO 2702825

Analog in- and output terminals

- 4 analog inputs or outputs
- 2-wire Technology, single ended
- Variants:
 - •4...20mA
 - •0...10V
- •12 bit resolution analog/digital converter
- Data format: standardized representation
- Process data (16 bit) → Voltage value
 - ■1695 hex →5781dec → 5,781 V

IB IL AI 4/I/4-20-ECO 2702495

IB IL AI 4/U/0-10-ECO 2702496

IB IL AO 4/I/4-20-ECO 2702497

IB IL AO 4/U/0-10-ECO 2702498

Temperature measurement UTH

- •4 inputs for thermocouples
- 2-wire technology
- Variants:
 - •J: -210 °C ... +1200 °C
 - •K: 270 °C ... +1372 °C
 - L: -200 °C ... +900 °C

IB IL UTH 4/J-ECO 2702502

IB IL UTH 4/K-ECO 2702503

IB IL UTH 4/L-ECO 2702504

Temperature measurement UTH

- •24 bit resolution analog/digital converter
- Data format: standardized representation
- Process data (15 bit + sign bit)
 - → Temperature value
 - \bullet 03C5 hex \rightarrow 965 dec \rightarrow 96,5°C

IB IL UTH 4/J-ECO 2702502

IB IL UTH 4/K-ECO 2702503

IB IL UTH 4/L-ECO 2702504

Temperature measurement RTD

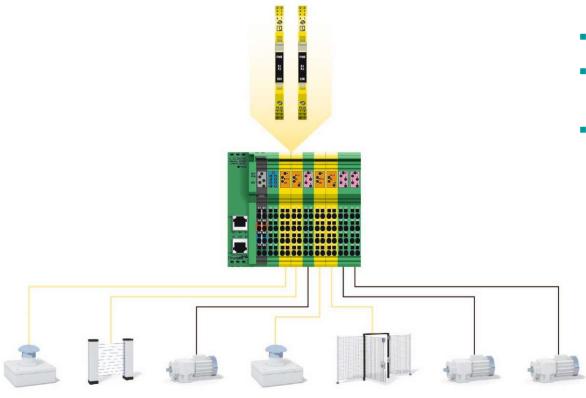
- 4 analog inputs
- 2-wire technology
- Variants:
 - Pt 100
 - **Pt** 1000
- •24 bit resolution analog/digital converter
- Data format: standardized representation
- Process data (15 bit + sign bit) → Temperature value 03C5 hex → 965 dec → 96,5°C

IB IL RTD 4/PT100-ECO 2702499

IB IL RTD 4/PT1000-ECO 2702501

Serial communication

- RS-232 Communication
- RS-485 Communication
- •Up to 38,4 kBaud
- Handshake RTS and CTS
- Transparent mode


IB IL RS 232-ECO 2702795

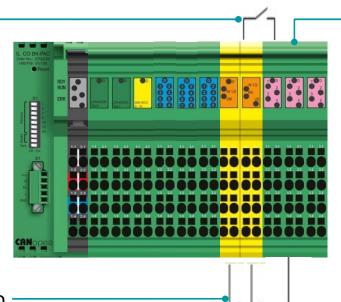
IB IL RS 485-ECO 2702141

Inline ECO IB IL SAFE 2-ECO

- Functionality like 2 PSR Relay's
- Completly based on hardware components
- Cascadable, for safe segment shutdown

24 Name of the Speaker / I/O Systems / Date

Inline ECO IB IL SAFE 2-ECO


- Two safety sensors
- No software required
- Switches off U_S
- Diagnostic informations in the PLC (it's as DI4)
- Diagnostic and status indicators
- Temperature range 0°C to 55°C

IB IL SAFE 2-ECO

Switches off U_S of the following Inline terminals

The DO 4/EF-ECO has to be installed to the right of the Safety terminal

Two dual-channel sensor circuits can be connected to one safe I/O terminal.

Inline ECO IB IL SAFE 2-ECO

Portfolio

Digital in- and output terminals & Safe I/O

IB IL 24 DI 8/HD-ECO 2702792	IB IL 24 DO 8/HD-ECO 2702793	IB IL 24 DO 4/EF-ECO 2702825	IB IL SAFE 2-ECO 2702446
new	new	new	new
8 digital inputs	8 digital outputs, 500 mA	4 digital outputs, 500 mA	2 safety sensors
1-wire technology	1-wire technology	2 and 3-wire technology	No software required
		Approved for safety- related segment circuit	Diagnostic infomations
			Up to PL e

Portfolio

Analog in- and output terminals

IB IL AI 4/I/4-20-ECO 2702495	IB IL AI 4/U/0-10-ECO 2702496	IB IL AO 4/I/4-20-ECO 2702497	IB IL AO 4/U/0-10-ECO 2702498
new	new	new	new
4 analog inputs	4 analog inputs	4 analog outputs	4 analog outputs
2-wire technology	2-wire technology	2-wire technology	2-wire technology
4 mA 20 mA	0 V 10 V	4 mA 20 mA	0 V 10 V
Data format: standardized representation			
Resolution A/D: 12 bits			

Technical details

Temperature measurement (RTD)

IB IL RTD 4/PT100-ECO IB IL RTD 4/PT1000-ECO 2702499 2702501 new new 4 analog inputs 4 analog inputs 2-wire technology 2-wire technology Supported sensors: Pt 100 Supported sensors: Pt 1000 Data format: standardized Data format: standardized representation representation

Portfolio

Temperature measurement (UTH)

IB IL UTH 4/J-ECO 2702502	IB IL UTH 4/K-ECO 2702503	IB IL UTH 4/L-ECO 2702504		
new	new	new		
4 differential inputs for thermocouples	4 differential inputs for thermocouples	4 differential inputs for thermocouples		
Supports type J thermocouples	Supports type K thermocouples	Supports type L thermocouples		
2-wire technology	2-wire technology	2-wire technology		
Measuring range: -210 °C +1200 °C	Measuring range: -270 °C +1372 °C	Measuring range: -200 °C +900 °C		

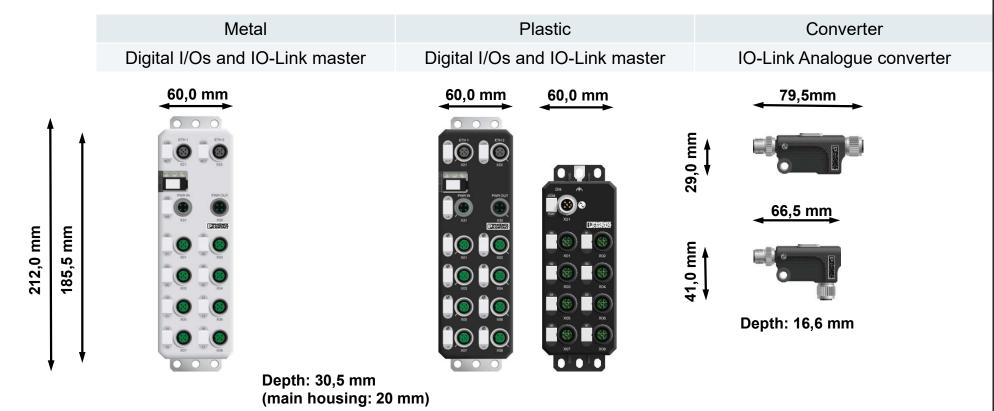
Portfolio

Serial communication

IB IL RS 232-ECO 2702795	IB IL RS 485-ECO 2702141				
new	new				
RS-232 Communication	RS-485 Communication				
Up to 38,4 kBaud	Up to 38,4 kBaud				
Handshake RTS & CTS	Handshake RTS & CTS				
Tranparent mode	Tranparent mode				

General data

- 6 networks
- More than 70 modules
- Plastic and metal housings
- Protection rating: IP65 / IP67
- -25°C ... 60°C



Features

Housings

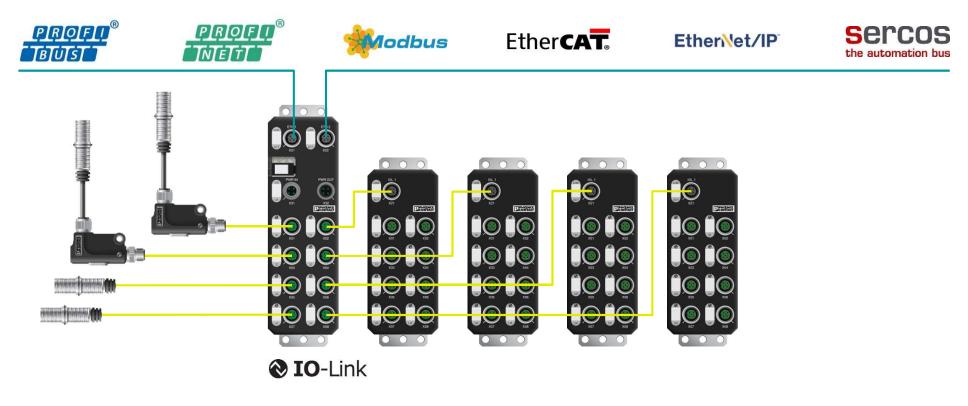
INSPIRING INNOVATIONS

35 Name of the Speaker / I/O Systems / Date

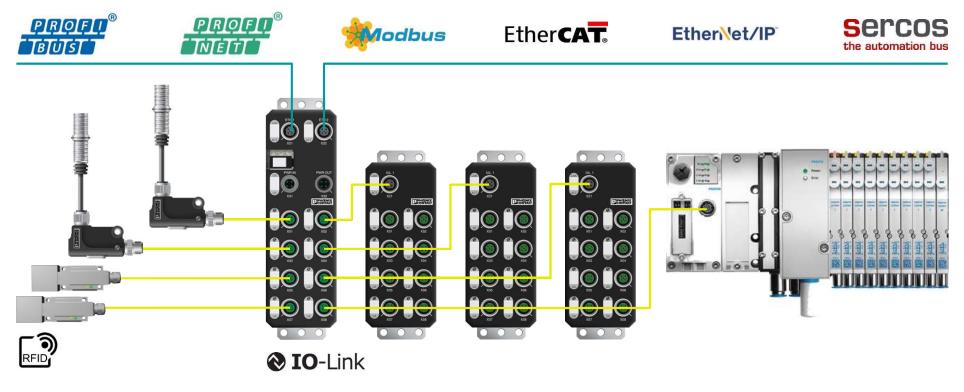
	Digital inputs	Digital inputs and outputs		Configurable digital in- / outputs	IO-Link and digital inputs	Analogue inputs	Analogue outputs	Temperature inputs
	16 channel	8 channel/ 8 channel	8 channel/ 4 channel, 2A	16 channel	8 channel 4 channel			
PROFO® BUSD								
PROF(I								
EtherNet/IP								
Modbus								
Ether CAT								
Sercos the automation bus								
						0 – 10V 4 – 20mA	0 – 10V 4 – 20mA	RTD
Q IO -Link		00				3	5000	1

Axioline E

IO-Link


- Master-module with 8 IO-Link ports
- Point to point connection
- Supply and communication via a single, unshielded sensor cable
- IO-Link devices for analogue in- and outputs and for temperature sensors and digital in- and outputs

Axioline E


Modular I/O station

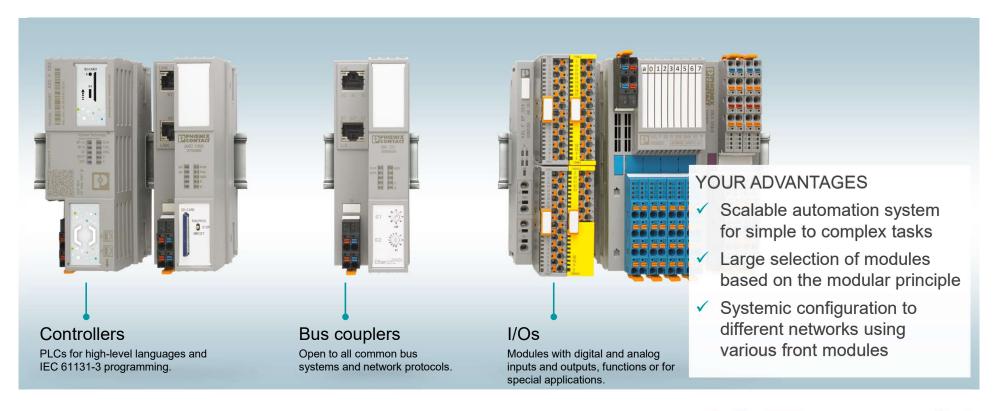
Axioline E

3rd party device integration

The Modular Automation System

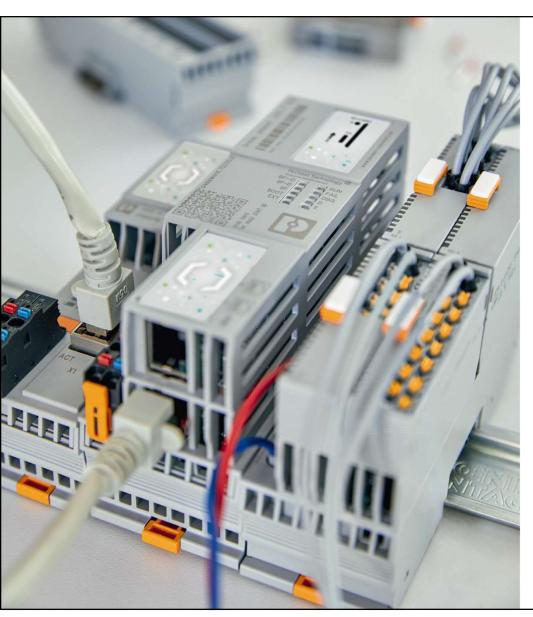
IT'S YOUR CHOICE

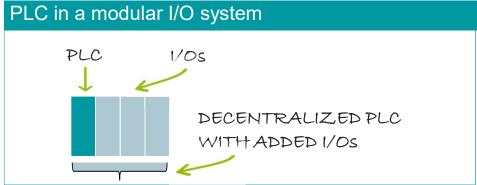
The modular automation system: basic idea


Open to the future

The modular automation system: basic idea

Modular automation system


Details of each "discipline"



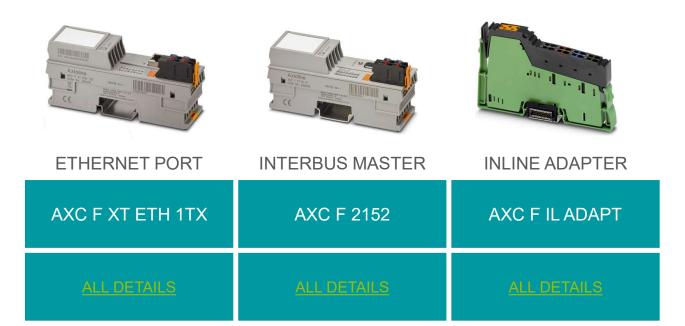
Controllers

PLCs for numerous applications

PLCs for the open PLCnext Technology ecosystem are available in the form of PLCnext Control devices. They enable the implementation of automation projects without the limitations of proprietary systems.

Portfolio overview - controllers

STANDARD OPTION


HIGHER PERFORMANCE

AXC F 1152	AXC F 2152	AXC F 3152				
8 tasks, 16 PN devices	32 tasks, 64 PN devices	32 tasks, 128 PN devices				
ALL DETAILS	ALL DETAILS	ALL DETAILS				

Portfolio overview - extensions

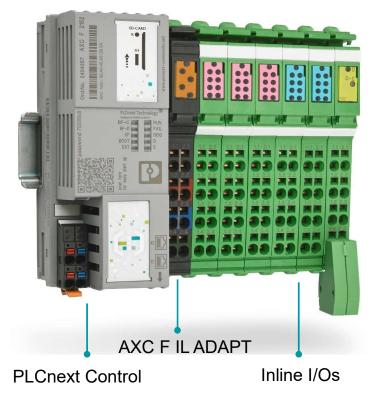
Easy expansion

Expand the functions of your

PLCnext Control device with an Ethernet

or INTERBUS module that can be aligned to
the left of the controllers (AXC F 2152 or

AXC F 3152).



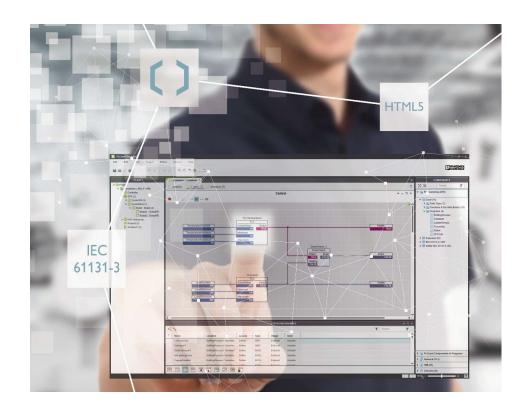
(Retro-)fit for the future

The Inline I/O system and PLCnext Technology fit together!

The Inline adapter terminal (AXC F IL ADAPT 1020304) allows you to easily extend an existing I/O station with a PLCnext Control device, thereby enabling the successive modernization of an existing system.

Store

In the PLCnext Store, you can download ready-to-use solutions to your PLCnext Control device and create your application quickly – without any deep understanding of programming. Phoenix Contact already provides numerous software libraries for PLCnext Engineer which are now available for download.



Controls

Function blocks

- You can easily integrate numerous functions into your system without programming effort, like:
 - IT functionality
 - Remote control functions
 - SQL connection
 - Control technology
 - Industry-specific solutions

All available function blocks can be found by on our website.

Conventional PLCs

Portfolio overview - controllers

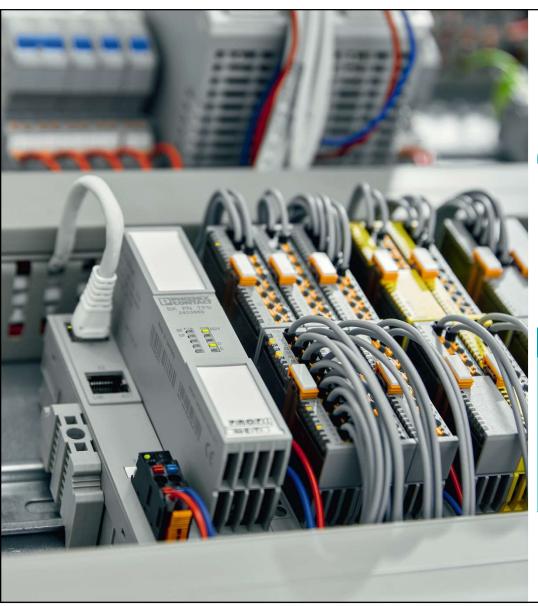
STANDARD PLC

AXC 1050

+ XC

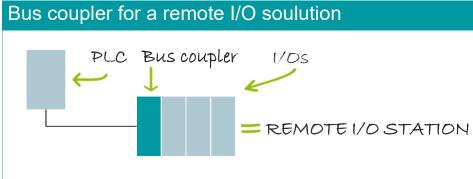
PLC WITH ENHANCED PERFORMANCE

AXC 3050


3 Ethernet interfaces

ALL DETAILS

ALL DETAILS

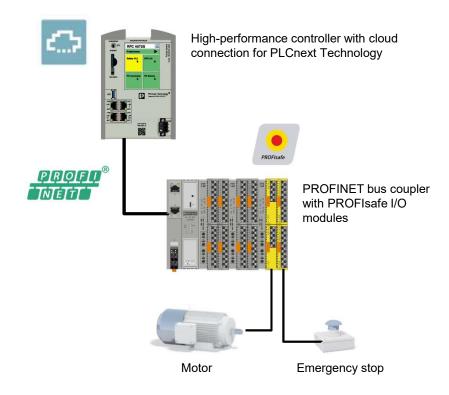

2 Ethernet interfaces

Connect to various networks

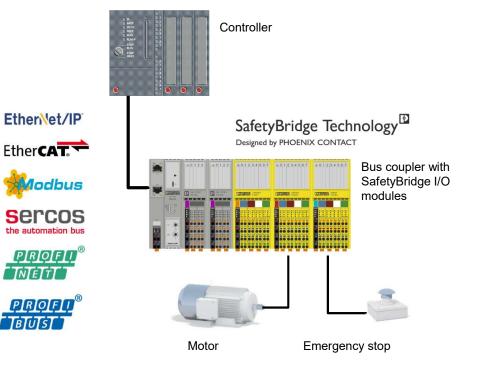
Use bus couplers to integrate all the I/Os of the modular automation system into your existing Ethernet network or bus system. The bus coupler opens up a local bus for up to 63 further I/Os.

Portfolio overview

MORE FLEXIBILITY IN YOUR AUTOMATION


- Bus couplers for all relevant communication protocols
- Links the I/O system into your network
- Opens up a local bus for up to 63 further devices

Safety in the system


Implement PROFIsafe solutions systemically in PROFINET networks. This can be easily done through the lower-level connection of PROFINET bus couplers with PROFIsafe I/O modules to a Phoenix Contact PROFIsafe controller.

SafetyBridge Technology

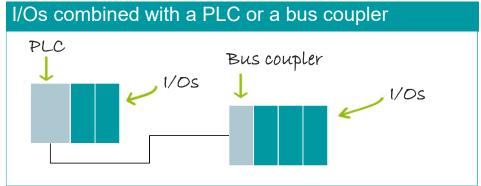
Use bus couplers to integrate I/Os into all common ethernet networks and bus systems. SafetyBridge Technology enables the networkand controller-independent implementation of safety applications – even without a safety controller.

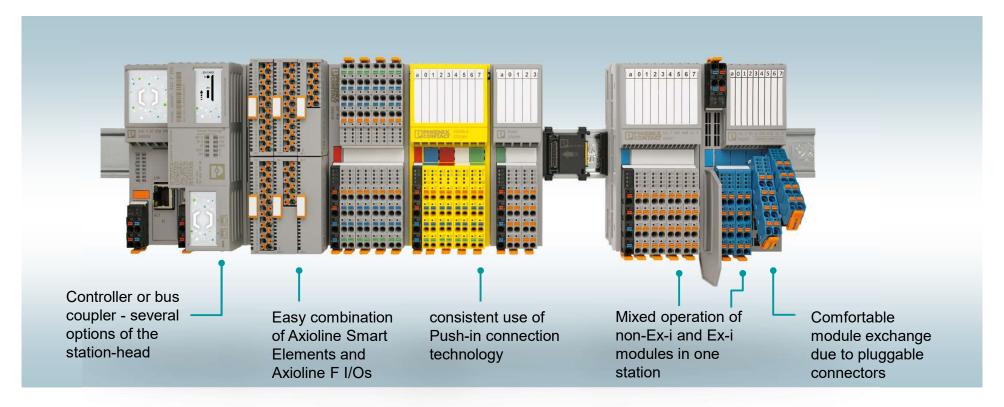
Easy offline parameterization - Startup+

The Startup+ software is specifically designed for the Axioline F I/O system. Each bus coupler provides an interface for the data exchange with the software.

Your benefits

- Easily check the wiring of the Axioline F I/O station
- Parameterization of the I/O modules used
- Comprehensive diagnostics during operation



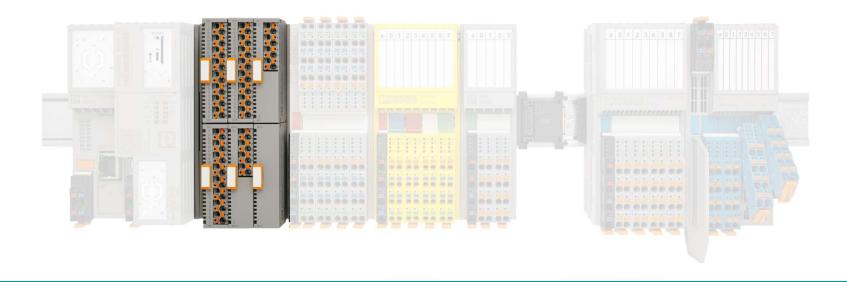

Combine I/Os flexibly

The versatile IP20 range, which can be combined flexibly, provides reliable protection for your data and signal traffic, allowing you to design your systems for every possible area of application.

Modularity in the system

Configuration for I/Os - Project+

With no training required, you can create a functional station in accordance with your specifications very quickly with Project+.


Your benefits

- Configuration software for fast I/O station planning
- Easily create custom I/O stations that are technically correct
- The signal requirements and structure plan at a glance

AXIOLINE SMART ELEMENTS

Automate smart and economically

READY FOR AUTOMATION

- Initial portfolio with all major I/Os
- All necessary functionalities incl. Safety and IO-Link

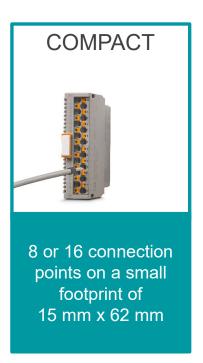
SDI

SDO

Al

IO-Link

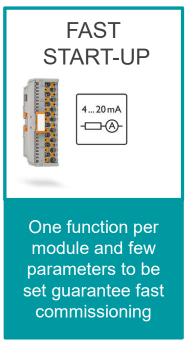
k INC


AO

RS485

CNT

Compact and flexible



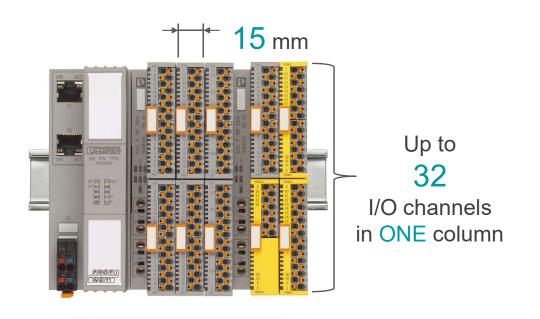
SYSTEM-

INDEPENDENT

Just like an Axioline F I/O

PLUGGABLE INTO AXIOLINE F BACKPLANES

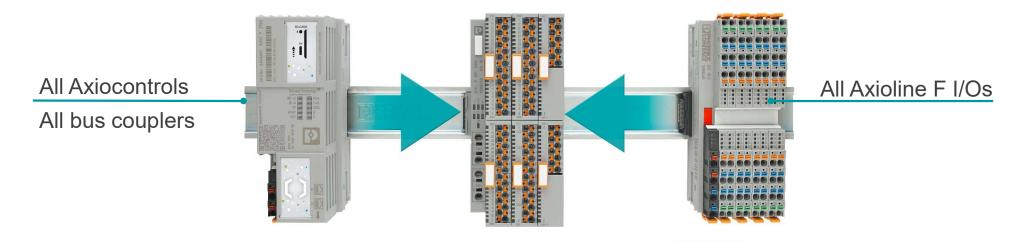
Without any rules - plug the Axioline Smart Elements into any position in the Axioline F backplane



Portfolio

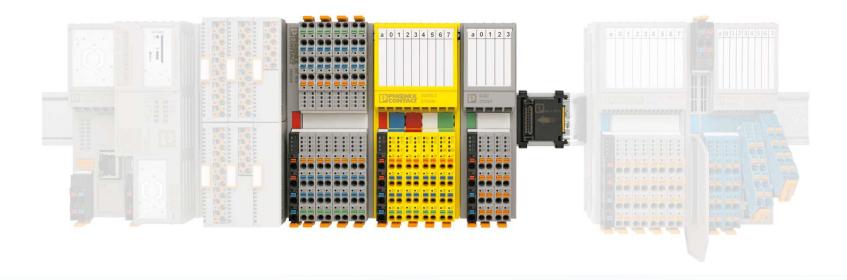
ANALOG INPUT		ANALOG OUTPUT		DIGITAL INPUT		DIGITAL OUTPUT		FUNCTION MODULES		SAFETY MODULES		SYSTEM MODULES	
Managar Managa	Al4 I		AO4 I	THE STATE OF THE S	DI16		DO16	The second secon	IOL4	W. W	PSDI	William Comments	SC-A
	Al4 U		AO4 U						CNT1	EXX	PSDO		
	RTD4								RS485			AXL F- BACKPLANE	
									INC1				BP 4
													BP 6

Compact and flexible I/O solution



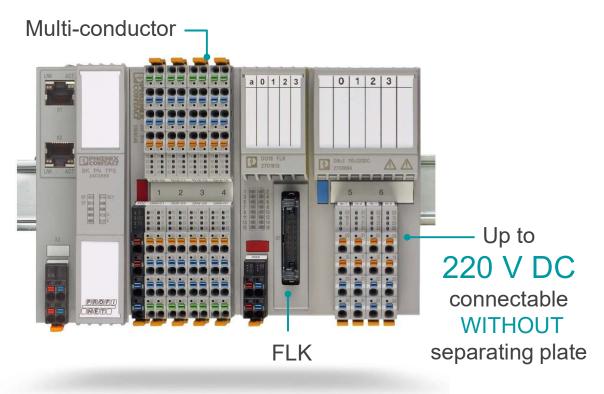
EXTREMLY COMPACT

Less space required on the DIN rail enables compact control cabinet solutions



Full compatibility

Choose out of a portfolio of more than <u>80</u> I/Os, bus couplers and controls



AXIOLINE F: Standard I/O modules

Various connection methods

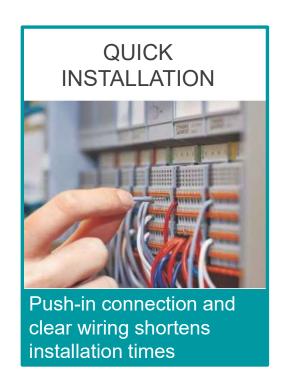
VERSATILE CONNECTABLE

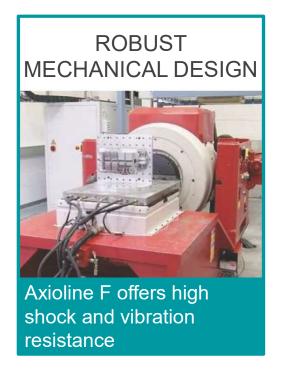
Axioline F impresses with its versatile connection methods. Just as you need it.

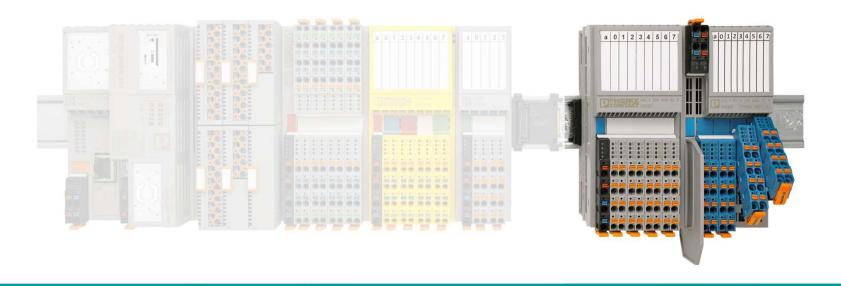
Functions for every application

LAGRE RANGE OF I/Os

Axioline F is a modular I/O system designed to meet every requirement and it offers a large range of I/O modules with digital and analog inputs and outputs, functions or for special applications. Implement safety applications with PROFIsafe or SafetyBridge Technology.






Designed to meet every requirement

AXIOLINE F: Modules for special environment

Extended temperature range

RELIABLE AT EXTREME TEMPERATURES

In harsh environments, reliable communication is essential. Axioline F features a particularly robust mechanical design.

The XC versions with an extended operating

temperature range from -40°C to +70°C and coated printed circuit boards are ideal for use under extreme conditions.

Approvals for marine automation

RELIABLE WITHOUT INTERFERENCE

Due to their advantageous properties, the I/O modules have been approved by all major marine classification societies. With its low noise emission and robust mechanical design, Axioline F satisfies the stringent requirements for automation in shipbuilding.

Intrinsically safe I/Os

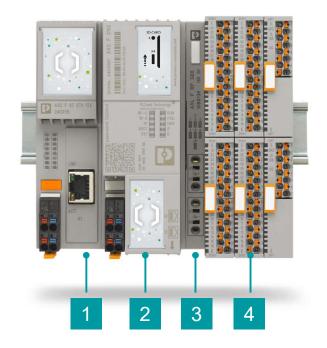
RELIABLE UP TO ZONE 0

The intrinsically safe I/O modules can be installed in zone 2 and are suitable for the use of sensors and actuators up to zone 0. They feature HART communication and NAMUR functionality, making them particularly suitable for applications in process automation.

The right automation solution for every requirement

Click on the tiles to see four possible solution for different use cases which can be created using our

Modular automation system.



Some solutions

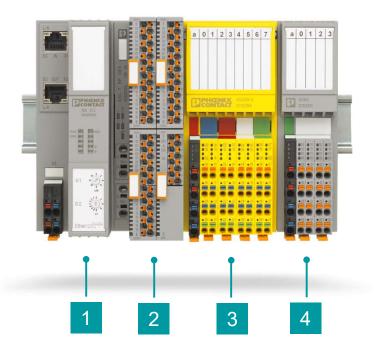
OPEN AND FUTUREPROOF

- Create a compact I/O solution with Axioline Smart Elements and a PLCnext Control. Use parallel programming such as IEC 61131-3 or high-level-languages and easy access to cloud services.
- 1 Functional expansion of the PLC AXC F XT ETH 1TX
- 2 Open control platform AXC F 2152
- 3 Backplane for Axioline Smart Elements AXC F BP SE6
- 4 Digital signal processing AXL SE DI16/1

The right automation solution for every requirement

Click on the tiles to see four possible solution for different use cases which can be created using our

Modular automation system.



Some solutions

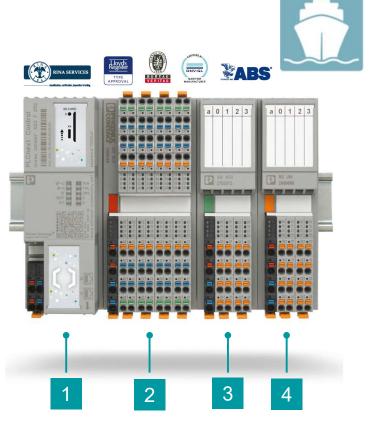
NUMEROUS POSSIBILITIES

- Many machine variants require a high degree of flexibility with respect to the station structure and a wide range of function modules. Axioline F offers many products to provide an optimal solution for this type of application.
- 1 EtherCAT communication AXL F BK EC
- 2 Digital signal processing AXL SE DO16
- 3 SafetyBridge Technology AXL F SSDO8/3
- 4 Connection of strain gauge AXL F SGI2

The right automation solution for every requirement

Click on the tiles to see four possible solution for different use cases which can be created using our

Modular automation system.



Digital and communicative

EQUIPPED WITH APPROVALS

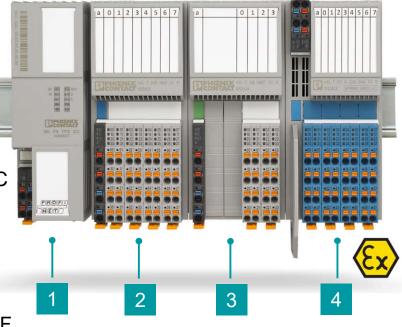
- The digitalization of ships in all service life phases requires new technologies and solutions that meet future requirements to operate ships more efficiently and digitally.
- 1 Open control platform AXC F 2152
- 2 Digital signal processing AXL F DO16/3
- 3 Analog signal processing AXL F Al2 AO2
- 4 Serial communication protocols AXL F RS UNI

The right automation solution for every requirement

Click on the tiles to see four possible solution for different use cases which can be created using our

Modular automation system.

Robust and intrinsically safe


MONITORING AND OPTIMIZATION

Monitoring and optimization are becoming increasingly important in process automation.

Axioline F connects HART and NAMUR devices from the field, even under extreme conditions.

- **S2 PROFINET system redundancy** AXL F BK PN TPS XC
- 2 NAMUR inputs AXL F DI16 NAM XC 1F
- 3 HART communication AXL F Al8 HART XC 1F
- 4 Intrinsically safe I/O modul AXL F EX IS DI16 NAM XC 1F

Scope of applications

IP20 I/O Systems

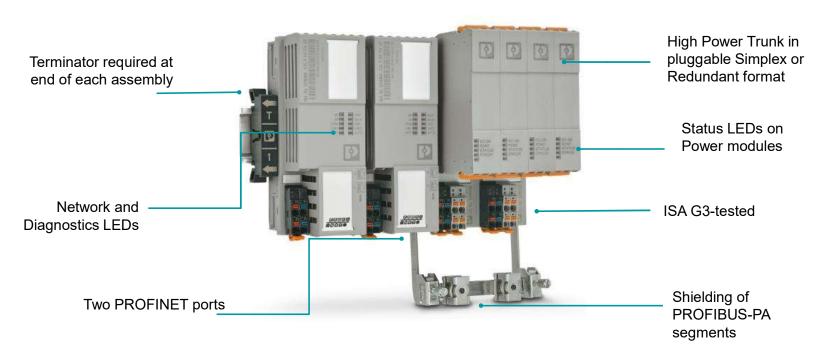
SIMPLE APPLICATIONS COMPLEX

MODULAR AUTOMATION SYSTEM

I/O-Systems

Agenda

- Axioline P Proxy update
- Axioline P I/O
- Axioline F XC I/O
- PC World
- Homework
- Webinars


Proxy Update

Key Elements

Axioline P Proxy

Modular design with user-friendly GSDML Composer software to make setup easy Designed to support PROFINET R1 & R2 in future

Axioline P with High Availability I/O **INSPIRING INNOVATIONS**

Key Elements

TECHNICAL

Axioline P I/O modules

- Power supply and I/O are combined in the module no separate I.S. power supply is needed
- Additional modules can be added or removed without interrupting power to installed modules

Part Numbers

SALES

Axioline P I/O Modules

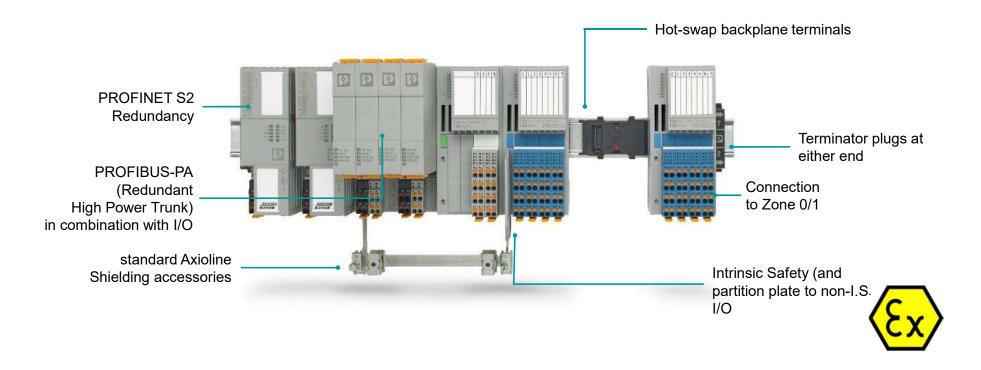
Order Number	Designation	Туре	Function description
1052429	AXL P AI8 HART 1F	Al	HART Analog input, 8 channels
1052431	AXL P EX IS AI8 HART 1F	Al	Intrinsically Safe HART Analog input, 8 channels
1087079	AXL P AO4 HART 1F	AO	HART Analog output, 4 channels
1087082	AXL P EX IS AO4 HART 1F	AO	Intrinsically Safe HART Analog output, 4 channels
1052416	AXL P DI16 NAM 1F	DI	NAMUR Digital input, 16 channels
1052417	AXL P EX IS DI16 NAM 1F	DI	Intrinsically Safe NAMUR Digital input, 16 channels
1087078	AXL P EX IS DO4 SD 21-60 1F	DO	Intrinsically Safe Digital Output Solenoid Driver, 4 channels, 60 mA
1087077	AXL P EX IS DO4 SD 24-48 1F	DO	Intrinsically Safe Digital Output Solenoid Driver, 4 channels, 48 mA
1100201	AXL F/P IO EX PP	Barrier	Partition Plate to separate non- and Intrinsically Safe I/O Modules

Industries & Applications

Areas of application

- Chemical
- Food & Beverage
- Oil & Gas
- Marine & Off-shore

- Powder and Liquids
- ☑ Distillation & Fermentation
- Fuel Storage & Transfer
- ✓ Carbon- and Bio-based Fuels


 Any Application requiring High Availability and Redundancy – coupled with Hot Swap, and operational upgrades and dynamic reconfiguration

Key Elements

TECHNICAL

Axioline P Portfolio

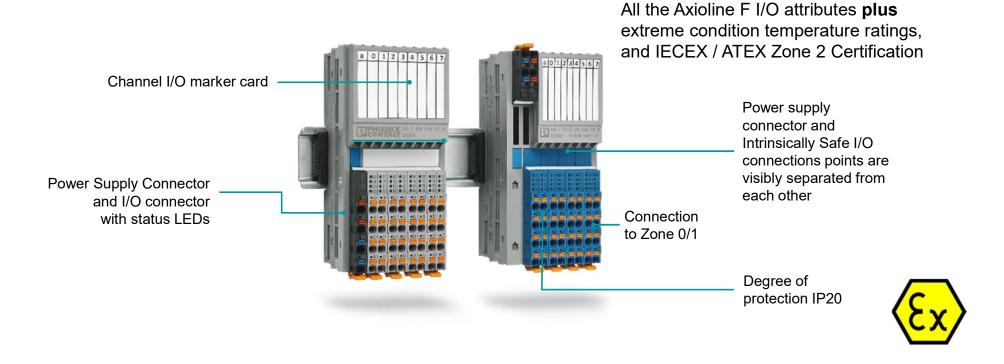
Summary

Axioline PI/O

- Key topics to remember:
- PROFINET Control from DCS
 ABB 800xA or Siemens PCS 7,
 or Siemens S7-1500 with S2
- Hot-Swap
- Integrated Power to the I/O modules from the backplane
- Analog HART Input and Output
- NAMUR Digital Inputs

 (aka Supervised Inputs)

SALES


Axioline F with XC I/O

Key Elements

TECHNICAL

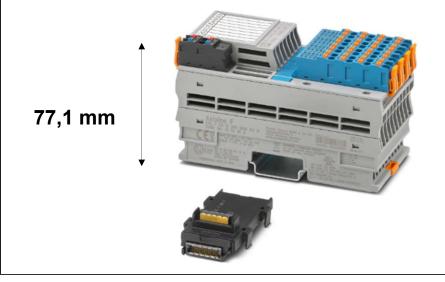
Axioline F XC I/O modules

Part Numbers

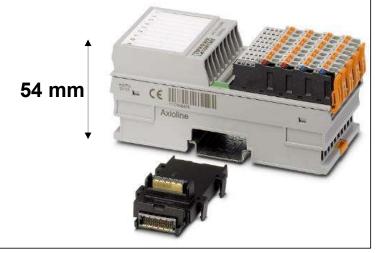
SALES

Axioline F XC I/O Modules

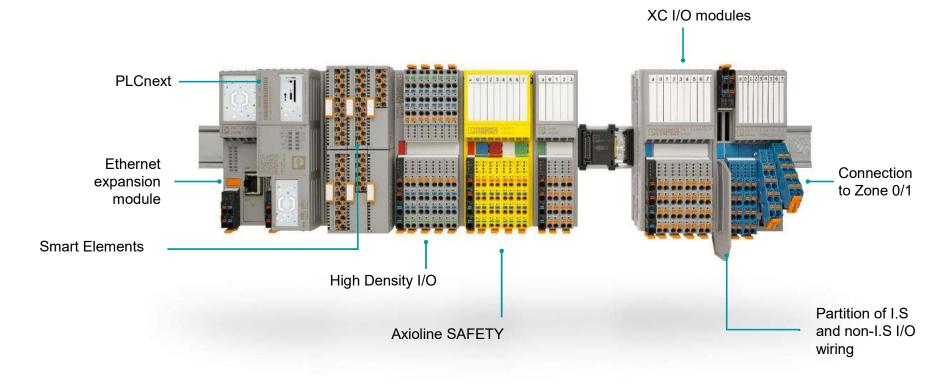
Order Number	Designation	Туре	Function description
1052434	AXL F AI8 HART XC 1F	Al	HART Analog input, 8 channels
1052432	AXL F EX IS AI8 HART XC 1F	Al	Intrinsically Safe HART Analog input, 8 channels
1087080	AXL F AO4 HART XC 1F	AO	HART Analog output, 4 channels
1087081	AXL F EX IS AO4 HART XC 1F	AO	Intrinsically Safe HART Analog output, 4 channels
1052427	AXL F DI16 NAM XC 1F	DI	NAMUR Digital input, 16 channels
1052423	AXL F EX IS DI16 NAM XC 1F	DI	Intrinsically Safe NAMUR Digital input, 16 channels
1086902	AXL F EX IS DO4 SD 21-60 XC 1F	DO	Intrinsically Safe Digital Output Solenoid Driver, 4 channels, 60 mA
1086901	AXL F EX IS DO4 SD 24-48 XC 1F	DO	Intrinsically Safe Digital Output Solenoid Driver, 4 channels, 48 mA
1100201	AXL F/P IO EX PP	Barrier	Partition Plate for non- and Intrinsically Safe I/O Modules


Axioline F XC I/O Modules

Dimensional depth differences



The XC series of Axioline F modules in both I.S. and non I.S. are 23,2 mm higher than the regular Axioline F module.


The regular depth of an Axioline F module is 54 mm. This module is used as reference since it shares the same 53,6 mm width and 126,1 mm height as the Hardened XC I/O series.

Key Elements

Axioline F Portfolio

Summary

Axioline F XC I/O modules

- Key Topics to Remember
- PLCnext, all AxioControl and Bus Couplers
- Connectivity to IECEx / ATEX Zone 2 (grey)
- Connectivity to IECEx / ATEX Zone 0/1 (blue)
- NAMUR Digital Input
- Analog HART Input and Output
- All Vertical Markets

Intrinsic Safety in Automation

Key Features (1)

	Axioline P	Axioline F	Blue Inline
DI NAMUR	$\overline{\checkmark}$	$\overline{\checkmark}$	\checkmark
AI HART	$\overline{\checkmark}$	$\overline{\checkmark}$	
DO	$\overline{\checkmark}$	$\overline{\checkmark}$	\checkmark
AO HART	$\overline{\checkmark}$	$\overline{\checkmark}$	
Hot Swap	$\overline{\checkmark}$		
Integrated Power	$\overline{\checkmark}$		
PROFIBUS PA	$\overline{\checkmark}$		

Inherent Similarities and Differences in XC I/O

Key Features (2)

	Axioline P	Axioline F
PROFINET	$\overline{\checkmark}$	
PLCnext Technology ™		
Standard Axioline I/O		
Axiocontrol		V
EtherNet/IP		V
Modbus TCP/IP		V
Ethercat		

Visual & Technical Differences

TECHNICAL

Comparisons between XC I/O Modules

Axioline F XC I/O module

- ✓ Black Power Connector
- ✓ Partition Plate slots
- ✓ Interlocking backplane connectors in Axioline F

Axioline P I/O module

- ✓ Hot Swap
- ✓ Power to Module supplied from backplane
- Partition Plate slots
- ✓ Slide-in backplane connectors in Axioline P with terminators at both ends

PLCnext Technology[™]

Designed by PHOENIX CONTACT

PLCnext Controls

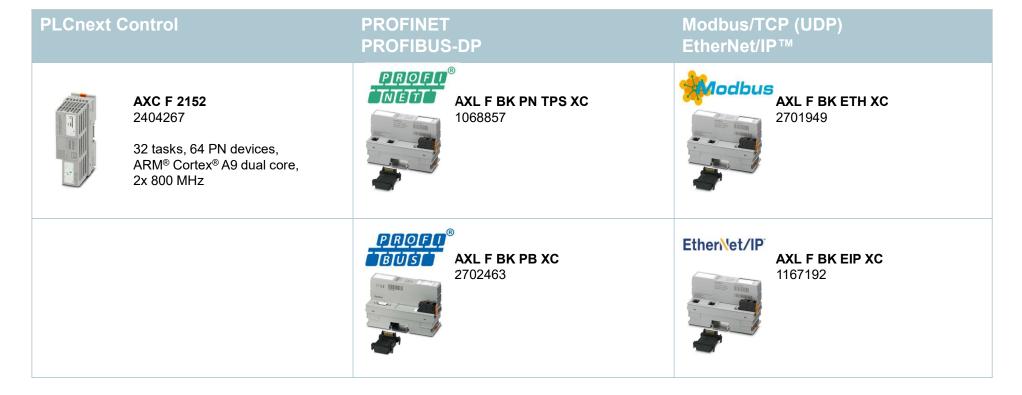
PLCnext Control: AXC F 2152

- ▼ Temperature range: -25°C up to +60°C

Axioline F - the block-based modular I/O system

Axioline F XC (eXtreme Conditions)

- Axioline F XC modules for rugged environments
 - Can be used under extreme ambient conditions
 - Extended temperature range of -40°C ... +70°C (see "Tested successfully: use under extreme ambient Completion Q3 2020 conditions" in the data sheet)
 - Partially coated PCBs
 - **Ex** approvals for many XC modules
 - ATEX (Zone 2)
 - IECEx (Zone 2)
 - UL Hazardous Location Class I, Division 2



Axiocontrol and Bus Coupler

XC - Digital Input / Output

Digital Input	Digital Output	Digital Input Digital Output
AXL F DI16/4 XC 2F 2701224 24 V DC, 4-wire	AXL F DO16/3 XC 2F 2701228 24 V DC, 500 mA, 3-wire, safety circuit	AXL F DI8/1 DO8/1 XC 1H 2702017 8 DI, 24 V DC, 1-wire 8 DO, 24 V DC, 500 mA, 1-wire

XC Process I/Os - Digital Input / Output

Digital Input-NAMUR

Digital Output-Solenoid Driver

3-wire

AXL F DI16 NAM XC 1F 1052427

16 digital inputs for NAMUR proximity sensors (IEC/EN 60947-5-6), 2-wire

AXL F EX IS DO4 SD 24-48 XC 1F 1086901

Intrinsically safe, 4 digital outputs, 24 V DC, 48 mA,

AXL F EX IS DI16 NAM XC 1F 1052423

Intrinsically safe, 16 digital inputs for NAMUR proximity sensors (IEC/EN 60947-5-6), 2-wire

AXL F EX IS DO4 SD 21-60 XC 1F 1086902

Intrinsically safe, 4 digital outputs, 21 V DC, 60 mA, 3-wire

XC - Analog Input / Output

Analog Inp	out	Analog Output
	AXL F AI4 I XC 1H 2702007 0 20 mA, 4 20 mA, -20 +20 mA, 2-, 3-, 4-wire	AXL F AO4 XC 1H 2702153 0 5 V, -5 +5 V, 0 10 V, -10 +10 V, 0 20 mA, 4 20 mA, 2-wire
August Au	AXL F AI4 U XC 1H 2702008 0 5 V, -5 5 V, 0 10 V, -10 10 V, 2-, 3-, 4-wire	

XC Process I/Os - Analog Input / Output (HART)

Analog Input-HART Analog Output-HART

AXL F AI8 HART XC 1F 1052434

8 analog inputs, HART enabled, 4 ... 20 mA, 2-wire

AXL F AO4 HART XC 1F

1087080

4 analog outputs, HART enabled, 4 ... 20 mA, 2-wire

AXL F EX IS AI8 HART XC 1F 1052432

Intrinsically safe, 8 analog inputs, HART enabled, 4 ... 20 mA, 2-wire

AXL F EX IS AO4 HART XC 1F

1087081

Intrinsically safe, 4 analog outputs, HART enabled, 4 ... 20 mA, 2-wire

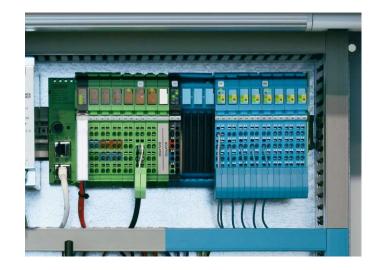
Axioline F in the zone – Ex approvals for Axioline F

XC - Temperature measurement / Communication / Function

UTH (Thermocouple Sensors) Serial (RS-232, RS-422/485) RTD (Resistive Temperature Sensors) **Counter, Incremental Encoder AXL F RTD4 XC 1H AXL F UTH8 XC 1F AXL F RS UNI XC 1H** 1035430 2702464 2702006 4 channels: 8 channels: 1 interface. Pt. Ni. KTY. Cu sensors: Sensor types: U, T, L, J, E, K, N, S, RS-485/422 or RS-232: R, B, C, W, HK; linear resistance measuring; Speed: 110 bps ... 250 kbps; linear voltage measuring; Protocols: Transparent, end-to-end. 2, 3, 4-wire (shielded) 2-wire (shielded, twisted pair) XON/XOFF, Modbus/RTU **AXL F CNT2 INC2 XC 1F** 2701239 2 Counter inputs, 32 Bit, 2 Incremental encoder inputs, Input frequency up to 300 kHz

Axioline F in the Zone

- PLCnext 2152 with ATEX / IECEx / C1D2
- Bus Couplers PROFINET, PROFIBUS-DP, EtherNet/IP, MODBUS-TCP
- Installation in Zone 2
- Connectivity to IECEx / ATEX Zone 2 (grey)
- Connectivity to IECEx / ATEX Zone 0/1 (blue)
- NAMUR Digital Input
- Solenoid Driver Digital Output
- Analog HART Input and Output
- All Vertical Markets with Automation



Use Cases for AXL F and P with Zone 2 capability

Existing (Inline) Applications requiring Zone 2

- Pipeline Monitoring
- Whiskey with PROFIBUS-DP BK & PROFIBUS-PA Field Devices
- Alcohol production (distillation) also similar to perfume and flavoring production
- Powder, Detergents and Cleaning liquids
- Ammunition and explosives gun powder
- Paint line for medium sized jets
- Plastics granulate distribution and parts molding
- Methane & Gas production
- Undersea robotics in gas field exploration
- Natural Gas refilling Stations for CNG vehicles
- Aircraft jet refueling stations
- Grain silo storage
- Pharmaceutical bulk compound production
- Natural gas turbine and compressor stations

AXC F 1152 - 1151412

- ARM Cortex A9 single core, 800 MHz
- Up to 8 tasks
- Up to 16 PROFINET devices
- Up to 63 Axioline I/O modules can be aligned directly
- Trusted Platform Module (TPM) for security
- M2M system networking with OPC UA

AXC F 2152 - 2404267

- ARM Cortex A9 dual core, 2x 800 MHz
- Up to 32 tasks
- Up to 64 PROFINET devices
- Up to 63 Axioline I/O modules
- Left-alignable interface extension (INTERBUS, PROFIBUS, Ethernet)
- Trusted Platform Module (TPM) for security
- M2M system networking with OPC UA

AXC F 3152 - 1069208

- Intel® Atom™ E3930 dual core, 2x 1.3 GHz
- Integrated UPS
- Up to 128 PROFINET devices
- Ready for time-sensitive networking
- Up to 63 Axioline I/O modules
- Left-alignable interface extension (INTERBUS, PROFIBUS, Ethernet)
- Trusted Platform Module (TPM) for security
- M2M system networking with OPC UA

AXC 1050 - 2700988

- Altera NIOS II processor
- 1 MB program memory
- 2 MB mass storage
- 48 kB non-volatile mass storage
- PROFINET controller
- 2 Ethernet interfaces and 1 Axioline F interface
- Extended temperature range with the XC version: -40°C ... +70°C
- Programming with PC Worx in accordance with IEC 61131-3

AXC 3050 - 2700989

- Intel® Atom™ E660
- 4 MB program memory
- 8 MB mass storage
- 128 kB non-volatile mass storage
- 3 separate Ethernet interfaces and 1 Axioline F interface
- PROFINET controller
- Maritime approvals
- Programming with PC Worx in accordance with IEC 61131-3

AXC F XT ETH 1TX- 2403115

- Individual expansion option for PLCnext Controls of the Axiocontrol series
- Left-alignable Gigabit-class Ethernet interface
- Additional independent MAC address
- PROFINET support
- Electrical isolation between Ethernet interface and logic

AXC F XT IB - 2403018

- Individual expansion option for PLCnext Controls of the Axiocontrol series
- Up to 512 INTERBUS remote bus devices can be connected
- INTERBUS connection via 9-pos. D-SUB socket
- Automatic detection of the transmission speed in INTERBUS (500 kbps or 2 Mbps)
- Electrical isolation between INTERBUS interface and logic
- Diagnostic and status indicators

AXC F IL ADAPT - 1020304

- Inline I/O adapter terminal specifically developed for all PLCnext Control devices of the Axiocontrol series
- A variety of functional I/Os creates options for flexible automation solutions
- Convert existing machines and systems to the new, open PLCnext Technology ecosystem
- Automatic detection of the transmission speed in INTERBUS (500 kbps or 2 Mbps)
- Up to 63 INTERBUS devices can be connected
- Diagnostic and status indicators

AXL F BK PN TPS - 2403869

- PROFIsafe support and PROFIenergy support
- Conformance with PROFINET specification V2.3
- 2 RJ45 connections
- BootP and DCP
- Firmware can be updated
- Typical cycle time of the Axioline F local bus is around 10 μs
- Safe analog value processing with SAFE AI and other components

+ XC AXL F BK PN TPS XC- 1068857

Extended temperature range of -40 °C ... +70 °C

AXL F BK EC - 2688899

- 2 RJ45 connections
- Automatic addressing
- Station mapped as a modular EtherCAT® device using a modular device profile (MDP)
- Station can be mapped as a block device
- Acyclic data communication (mailbox protocols)
- Cyclic data communication
- Firmware can be updated
- Typical cycle time of the Axioline F local bus is around 10 μs

AXL F BK EIP EF - 2702782

- 2 Ethernet ports (with integrated switch)
- Transmission speed of 10 Mbps and 100 Mbps
- Rotary coding switches for setting the IP address assignment and other functions
- Supported protocols: EtherNet/IP□, DLR, SNMP, HTTP, TFTP, FTP, BootP, DHCP, DCP
- Firmware can be updated
- Typical cycle time of the Axioline F local bus is around 10 μs

AXL F BK ETH - 2688459

- 2 Ethernet ports (with integrated switch)
- Rotary coding switches for setting the IP address assignment and other functions
- Supported protocols: Modbus/TCP (UDP), SNMP, HTTP, TFTP, FTP, BootP, DHCP, DCP
- Firmware can be updated
- Runtime in the bus coupler is negligible (almost 0 µs) (for Modbus/UDP)

+ XC AXL F BK ETH XC - 2701949

Extended temperature range of -40 °C ... +70 °C

AXL F BK S3 - 2701686

- 2 RJ45 connections
- Rotary encoding switch
- Supports Sercos V1.3
- FSP-IO (Function Specific Profile-IO) for modular I/O devices
- 8 connections
- Firmware can be updated
- Typical cycle time of the Axioline F local bus is around 10 μs

AXL F BK SAS - 2701457

- 2 RJ45 connections
- Transmission speed of 100 Mbps
- Rotary encoding switch
- Supports IEC 61850, MMS, and GOOSE
- BootP and DHCP
- Web-based management to set up an I/O station for MMS or GOOSE communication

AXL F BK PB - 2688530

- Electrical isolation between PROFIBUS interface and logic
- DP/V1 for class 1 and class 2 masters
- PROFIBUS data transmission speed of 9.6 kbps to 12 Mbps
- Dynamic configuration is supported
- I&M functions
- Firmware can be updated
- Typical cycle time of the Axioline F local bus is around 10 μs

+ XC AXL F BK PB XC - 2702463

Extended temperature range of -40 °C ... +70 °C

Digital I/Os

+ XC
8 - 64
1-, 2, or 4-wire-connection
Input modules for IEC 61850
+ XC
4 - 64
1-, 2, or 3-wire- or FLK connection
Output modules for IEC 61850, relay outputs

Analog I/Os

Analog inputs		+ XC
CHANNELS	2 - 8	
A/D CONVERTER RESOLUTION	2-, 3, or 4-wire-connection	
TYPES	Current, voltage, RTD, UTH	
Analog outputs		+ XC
Analog outputs CHANNELS	2 - 8	+ XC
	2 - 8 2-, 3, or 4-wire-connection	+ XC

I/Os for safety applications

Safe digital inputs	
CHANNELS	4 safe digital inputs (two-channel) 8 safe digital inputs (single-channel)
TECHNOLOGY	SafetyBridge Technology PROFIsafe
Safe digital outputs	
CHANNELS	4 safe digital inputs (two-channel) 8 safe digital inputs (single-channel)
TECHNOLOGY	SafetyBridge Technology PROFIsafe

Function modules

Portfolio overview						
	Counter inputs and Incremental encoder inputs	AXL F CNT2 INC2 1F	+ XC			
	SSI-interface	AXL F SSI1 AO1 1H				
	Digital pulse interface	AXL F IMPULSE2 XC 1H	XC			
	Pulse width modulation	AXL F PWM2 1H				
TYPES	Strain gauge capture	AXL F SGI2 1H				
	Power measurement	AXL F PM EF 1F				
	Serial communication	AXL F RS UNI 1H	+ XC			
	IO-Link master	AXL F IOL8 2H				
	M-Bus master	AXL F MA MBUS 1H				
	DALI master	AXL F MA DALI2 1H				

Thank you

