

2025

MINT PCU

VERSION 2.0

EN

MINT PCU Page 1 of 28

Table of Contents
1 Introduction .. 5

1.1 General ... 5

1.2 Architecture ... 5

1.3 Supported hardware .. 6

1.4 Supported software ... 6

1.4.1 Code Creator .. 6

1.4.2 Solarworkx ... 6

1.5 Control ... 6

1.5.1 Assets... 7

1.5.2 DataHub ... 8

1.5.3 Injection Limiting ... 8

1.5.4 Imbalance control ... 8

2 Software ... 9

2.1 Compatibility .. 9

2.2 Control ... 9

2.2.1 Master .. 9

2.2.2 Slave .. 10

2.3 Configuration .. 10

2.3.1 Site .. 10

2.3.2 Master/Slave ... 11

2.3.3 RTU .. 11

2.3.4 Collector .. 12

2.3.5 Solar .. 13

2.3.6 Wind .. 13

2.3.7 CHP ... 14

2.3.8 DataHub .. 14

2.3.9 Final steps ... 15

2.4 Input - Output ... 16

2.5 Assets.. 16

2.5.1 RTU .. 16

2.5.2 Collector .. 20

2.5.3 Solar .. 21

MINT PCU Page 2 of 28

2.5.4 Wind .. 21

2.5.5 CHP ... 22

2.6 Portal (option) ... 23

2.7 eHMI (option) .. 24

2.8 Debugging ... 25

3 Software Change ... 26

3.1 V3.0.0 .. 26

3.2 V3.0.1 .. 26

3.3 V3.0.2 .. 26

3.4 V3.1.0 .. 27

MINT PCU Page 3 of 28

Table of Figures
Figure 1: PCU architecture .. 5

Figure 2: Control structure .. 7

Figure 3: Master controller .. 9

Figure 4: Slave controller.. 10

Figure 5: Site config method .. 10

Figure 6: Slave config method .. 11

Figure 7: RTU config method .. 12

Figure 8: Collector config method .. 12

Figure 9: Solar config method .. 13

Figure 10: Wind config method .. 13

Figure 11: CHP config method ... 14

Figure 12: DataHub config method .. 15

Figure 13: Ready and control enable method .. 15

Figure 14: Fluvius RTU Interface.. 17

Figure 15: ORES RTU Interface .. 18

Figure 16: ORES RTU Interface .. 19

Figure 17: Collector Interface .. 20

Figure 18: Solar Interface .. 21

Figure 19: Wind Interface ... 22

Figure 20: CHP Interface .. 23

Figure 21: DataHub method linking ... 24

Figure 22: eHMI .. 24

MINT PCU Page 4 of 28

Table of Revisions

Date Version Description of Changes Status Author

30-08-2024 1.0 Initial release v3.0.0 Published Anthony Nicasens

03-09-2024 1.1 Version changes v3.0.1 Published Anthony Nicasens

18-09-2024 1.2 Version changes v3.0.2 Published Anthony Nicasens

19-11-2024 1.3 Version changes v3.1.0 Draft Anthony Nicasens

10-01-2025 2.0 New template Release Marco Cicarelli

MINT PCU Page 5 of 28

1 Introduction

1.1 General

The PCU library (Power Control Unit) is made to easily integrate the control of power

production assets (PV, Wind, CHP,) into a program, to ensure the demands of the power

distribution company (Fluvius, ORES, Sibelga, ...) are met. This is done by using

standardised code elements (Function blocks), in combination with methods to ensure

maximum flexibility in coding and operational reliability. The PCU library has a set of

standardised IO elements included, as well as standardised HMI elements for easy

configuration and visualisation. For distributed power control (control via multiple electrical

cabinets), multiple PLCs can be used in a master/slave configuration. To ensure system

security, the PLCs in a master/slave solution can communicate over a secure TCP

connection. An MQTT communication to the DataHub enables extended control options,

like visualise all the power production in the Phoenix Contact MINT portal, or PCU control

based on ENTSO-e day-ahead pricing.

1.2 Architecture

Figure 1: PCU architecture

The PCU architecture is made to be compatible with all kinds of devices and brands. If

there is a way to communicate and control the assets, there is a way to make it work. The

PLCs support up to 70 connections to assets in the field. The control software supports up

to 20 slave controllers, so it is possible to control up to 120 assets in the field. The

communication between the master and slave PLC is a secured TCP link (SSL). Each PLC

can communicate to the DataHub on its own, this ensures reliability and a high bandwidth

MINT PCU Page 6 of 28

of data, it also allows for alarming in case one of the PLCs is down. Each PLC is equipped

with IO cards that can read in real-time data from the field (statuses, serial and analog

communication). The default way of communicating with field devices is Modbus TCP or

RTU (depending on device compatibility), but other ways of communicating are also a

possibility. The master PLC oversees the connection to the utility company and will also

control the power of the site. In case of connection loss to the slave PLC, the slave will go

back to a fallback scenario. This fallback scenario is putting all the power of the assets to 0

and in the case the asset keeps producing power after 30sec it will trigger a disconnect of

the main switch. Each PLC sends its own measured data to the DataHub if the customer

wants visualisation, in case of day-ahead/imbalance control the master PLC will request

data from the DataHub.

1.3 Supported hardware

The PCU library is supported for all AXC F 2152 PLCs with firmware version 2024.0.6 and

PLCnext engineer version 2024.0.4 (since PCU V3.1.0). Other PLCs might also be used but

support will be limited. In case that there is a multi-cabinet solution (master/slave) multiple

PLCs must be used. There can be no use of other Profinet devices.

1.4 Supported software

1.4.1 Code Creator

The PCU library is made to be universally compatible with libraries and other custom-made

interface software. The Code Creator is an in-house tool that is used to generate code files

for communication with a specific device. This device must have a device package, which

has been created and verified (in the field). Once the code has been generated, the different

measurement and command data points can be linked to the in- and outputs of the PCU

interface function blocks.

1.4.2 Solarworkx

The Solarworkx library is a library created by Phoenix Contact Germany to communicate

and control various PV inverters of different brands. This is a standardised software library

utilising Modbus TCP or RTU to communicate with the inverters. This library requires an

additional license that must be bought to function.

1.5 Control

The library makes use of PLCnext PLCs to control all the power production assets on-site.

There can be multiple PLCs on-site in different cabinets who communicate their data to the

master PLC. The master PLC oversees the entire site. In case of power failure or

communication timeout to the master PLC the slave PLCs will give the command to the

power production units to ramp their production down until communication to the master

PLC is reestablished. The communication to the sub-PLCs runs over a TCP SSL link, so

security of the communication is ensured. The master PLC controls the entire site power

generation and makes sure the demands of the utility company are met. So will the PCU

MINT PCU Page 7 of 28

ramp the power down when commanded by the utility company when needed as well as

provide reactive power control when requested.

Figure 2: Control structure

The controller has a control hierarchy that is based on:

1. The electrical system limits of the site.

2. The demands of the utility company.

3. The power optimisation

• Load compensation

• Economic optimisation

• Reactive power compensation

4. Asset control limitations

This control structure is crucial to meet all the requirements of the grid operator and have a

reliable system that can perform multiple roles. In the case the electrical limits are not

respected, the installation will malfunction when there is high energy production. When the

limits of the utility company are not respected, they will disconnect the installation from the

grid. When an asset cannot perform in the way requested by the optimisation, the system

will compensate this "loss" with another asset.

1.5.1 Assets

The PCU can control all kinds of assets and is compatible with all kinds of companies if

there is a way to communicate and control the asset. The assets that are supported in the

library (as of V3.0.x) are the following:

• RTU (communication with utility company)

• Fluvius IEC104 (requires additional license)

• ORES RS485 single RTU (RESA integrated)

• ORES RS485 multi RTU (RESA integrated)

• Sibelga (specific function can be created on request)

• Other non-standardised RTU’s

MINT PCU Page 8 of 28

• Collector (communication with measurement device)

• Production Assets

• Photovoltaic inverters

• Windmills

• Combined Heat and Power

• Energy storage solutions (specific interface and control to be designed)

All the assets have their specific function. The RTU assets control the connection to the

utility company who on its own controls the maximum power that may be delivered by the

site. The collector asset is the asset responsible for measuring the effective power

consumption/production on that fuse. There is at least one configuration of each asset

necessary for the control to work.

1.5.2 DataHub

The optional DataHub feature of the PCU library can be useful when the data must be

available over the API or to make visualisation or advice-based injection possible. To

connect to the DataHub, a connection string should be requested to the Phoenix Contact

Sales or Support person. Once verified that this option is included in the contract, a key will

be given.

1.5.3 Injection Limiting

One of the functionalities of the control is limiting the injection of production of the site.

This may be necessary to make sure you have no power injection on the grid or to have

financial benefits of the system. The injection limiting is done by measuring the total power

that is flowing on the injection point of the site. When the power flow is almost negative, the

controller will start to reduce the power production on-site on the assets that are capable.

This feature can be configured in the PLC, there is the option to always enable injection,

never enable injection or control the injection based by day-ahead pricing. When choosing

the option of day-ahead pricing there should be a connection to the DataHub.

1.5.4 Imbalance control

The PCU control can be extended by using imbalance prices to regulate the flow of energy

to and from the grid, so the installation can be used to "generate" money. To optimise the

imbalance control functionality of the installation, a battery is required to maximise the

potential gains from the system. Working with imbalance control requires an imbalance

party and has higher data costs due to the second data demand requested by the grid

operator.

MINT PCU Page 9 of 28

2 Software

2.1 Compatibility

The PCU library is built and designed for the ACX F2152 firmware version 2024.0.6 and

PLCnext version 2024.0.4 Use of other firmware and software versions will not be

supported. The PCU and DataHub task should be run on a cycle time of at least 25ms and a

watchdog of 0 (disabled). The PLCnext base library service provider should be used to

function properly, and a reboot of the system should be done to initiate the PLCnext base

library. For more info refer to the PLCnext base library documentation.

The library is also compatible with the standard PCU cabinet, which has dedicated IO

components for all kinds of assets and communication. For master/slave control the

following cycle times are expected by the number of slaves:

• 0-5 Slaves < 10ms

• 6-10 Slaves < 13ms

• 11-15 Slaves < 17ms

• 16-20 Slaves < 20ms

Note that these cycle times are for the master controller itself, without any other program

task assigned under the same CPU core. For best practice, keep the PCU control and data

interfaces on separate cores. When using MQTT connections to the DataHub the cycle time

can also spike up to 4ms on top of the master control logic. When using more than 10

slaves it is also recommended to not have a lot of extra loads on the master controller (no

extra data traffic or calculations) on the CPU.

2.2 Control

2.2.1 Master

The software allows control of many PLCs in a master/slave control functionality. There

should always be at least one master configured in 1 PLC. This master functionality can be

made by calling the function "PCU_FB_SmartControl_Master_Control". By calling this

function you can call the configuration methods by which you can configure the entire site.

Figure 3: Master controller

The master control function consists of several variables:

• License: The license of the master (specific to device).

• RTU interface: the RTU interface to the RTU function blocks.

• Collector interface: the collector interface to the collector function blocks.

MINT PCU Page 10 of 28

• Solar interface: the solar interface to the solar function blocks

• Wind interface: the wind interface to the wind function blocks.

• CHP interface: the CHP interface to the CHP function blocks.

• DataHub data in: data from the DataHub.

• DataHub data out: data to the DataHub.

• HMI structure: linked to the HMI page (option).

• Active: if the control is active.

• Error: if there is an error active in the control.

• Diagnose structure: diagnose structure for error debugging.

2.2.2 Slave

The slave PLC has less inputs than the master PLC. There is no need for a configuration of

the assets on the slave PLC, this is all managed on the master PLC. There can be up to 10

slaves in the project. The slave controller has only a limited amount of configuration

(DataHub and connection to master). It also does not have the ability to connect to RTU and

battery interfaces, because this is all managed in the master PLC.

Figure 4: Slave controller

• License: The license of the slave (specific to device).

• Collector interface: the collector interface to the collector function blocks.

• Solar interface: the solar interface to the solar function blocks

• Wind interface: the wind interface to the wind function blocks.

• CHP interface: the CHP interface to the CHP function blocks.

• DataHub data in: data from the DataHub.

• DataHub data out: data to the DataHub.

• Active: if the control is active.

• Error: if there is an error active in the control.

• Connected: shows if the slave is connected to the master.

• Diagnose structure: diagnose structure for error debugging.

2.3 Configuration

2.3.1 Site

Every PCU has its site configuration, this site configuration has all the fundamental details

of the site.

Figure 5: Site config method

MINT PCU Page 11 of 28

In the site configuration method, you can set up the following details:

1. SiteName: give the site a name (for visualisation).

2. InjectionControl: control of the injection.

• Allow (Default): allow injection.

• Disallow: never allow injection on the grid.

• AdviceBased: allow injection based on day-ahead pricing.

3. ReactiveControl:

• RuleBased (Default): only follow RTU command, otherwise power factor 1.0.

• Manual: Define a power factor with the "Input_ManualPowerFactor" to follow if RTU

requests no reactive power.

• Automatic: The controller will try to compensate the reactive power consumption with

production. So, if the active power on the grid collector is 0, the reactive power will also

be 0.

4. PriceLimitInjection: when Advice-based injection is selected, you should write down the

price threshold by which the PCU should stop injecting into the grid.

5. Margin: extra margin by which you should stop injecting into the grid when injection

limiting is active.

2.3.2 Master/Slave

When making use of multiple PLCs, multiple slave connections should be configured to

communicate to the slave PLCs.

Figure 6: Slave config method

There are 3 parameters that must be configured to communicate to the slave/master PLC.

1. Slave name: Give the connection a name (for visualisation).

2. IP address: the address to which the slave/master PLC can be reached.

3. Port: the port by which the connection can connect over.

A maximum of 20 connections to slaves can be made. If this limit is exceeded in the

configuration, an error will occur in the initialisation of the project.

Important note

The firewall (of routers) should be configured so the connection ports can reach each other.

The SSL certificates should be uploaded in the PLC via the WBM, and the PLC time should

be synchronised to the same NTP server. Refer to the MINT certificates documentation for

more info.

2.3.3 RTU

Each project should have at least 1 RTU connection configured in the configuration. There

are 3 possible options at this point to communicate with the utility company. These options

will be explained in the Assets topic. The RTU configuration has 5 parameters to configure.

MINT PCU Page 12 of 28

Figure 7: RTU config method

1. Name: The name of the connection (for visualisation).

2. InstalledActivePower: The maximum active power that may be produced according to

the contract with the utility company (this value should match the value in the utility

company control).

3. InstalledReactivePower: The maximum reactive power that may be produced according

to the contract with the utility company (this value should match the value in the utility

company control).

4. FallBackActivePower: The fallback active power when the RTU watchdog has an alarm

state.

5. FallBackReactivePower: The fallback reactive power when the RTU watchdog has an

alarm state.

A maximum of 4 RTU control loops can be created in the PCU software, in most cases only

one will be used.

Important note

ORES communication scales between negative 0-120%, use the 120% active power value

in the configuration. For reactive power, the range is between -50 and +50% make sure to

use these values in the configuration. Fluvius communication scales between -100% and

+100% make sure the value of 100% matches the one configured by Fluvius. Typically for

Fluvius you count all installed power of the site to get the 100% value.

2.3.4 Collector

A collector is the name for the measurement device that is actively measuring the power

going through the electrical system. For each project at least one collector is

recommended. The collector configuration method has 7 parameters that must be

configured.

Figure 8: Collector config method

1. Parent: the collector that is electrically connected above this one. If this is the collector

on the connection point to the utility company, ’Grid’ should be used.

2. Name: name of the collector.

3. Fallback: fallback scenario in case that the collector is disconnected.

4. Dynamic reserve: not used (for future compatibility).

5. PhasePermutation: how the collector is electrically connected (refer to the electrical

drawing/wiring).

6. FixedReserve: the amount of reserve on top of the fuse limit (10% as default).

7. Fuse: The fuse limit on the collector.

MINT PCU Page 13 of 28

A maximum of 20 collectors can be used per slave, in total a site can have 200 collector

measurements.

Important note

There should be at least one collector configured that has as parent ’Grid’. When

configuring multiple collectors, the parent collector must already exist to get the

configuration working.

2.3.5 Solar

The solar configuration is used to parameterise the values of the solar inverter/logger to

control the inverter. The solar configuration has 7 parameters that must be configured to

work properly.

Figure 9: Solar config method

1. Parent: on what collector the solar is connected to.

2. Name: name of the solar.

3. RTU: what RTU control loop the solar is being controlled by.

4. Priority: what priority the asset has (green certificates high priority, default normal).

5. PhasePermutation: how the solar is electrically connected (refer to the electrical

drawing/wiring).

6. RatedActivePower: the maximum active power that can be delivered by the

invertor/logger (refer to the manual of the invertor/logger or the settings of the logger).

7. RatedReactivePower: the maximum reactive power that can be delivered by the

invertor/logger (refer to the manual of the invertor/logger or the settings of the logger).

Important note

The parent collector and RTU unit must already exist for the configuration to be successful.

If there is no parent collector or RTU, the field should be empty. At least an RTU or parent

collector should be present in the config.

2.3.6 Wind

The wind configuration is used to parameterise the values of a wind controller. The wind

configuration has 6 parameters that must be configured to work properly.

Figure 10: Wind config method

1. Parent: on what collector the wind is connected to.

2. Name: name of the wind.

3. RTU: what RTU control loop the wind is being controlled by.

MINT PCU Page 14 of 28

4. Priority: what priority the asset has (green certificates high priority, default normal).

5. RatedActivePower: the maximum active power that can be delivered by the

invertor/logger (refer to the manual of the invertor/logger or the settings of the logger).

6. RatedReactivePower: the maximum reactive power that can be delivered by the

invertor/logger (refer to the manual of the invertor/logger or the settings of the logger).

Important note

The parent collector and RTU unit must already exist for the configuration to be successful.

If there is no parent collector or RTU, the field should be empty. At least an RTU or parent

collector should be present in the config.

2.3.7 CHP

The CHP configuration is used to parameterise the values of a CHP unit. The CHP

configuration has 8 parameters that must be configured to work properly.

Figure 11: CHP config method

1. Parent: on what collector the CHP is connected to.

2. Name: name of the CHP.

3. RTU: what RTU control loop the CHP is being controlled by.

4. Priority: what priority the asset has (green certificates high priority, default normal).

5. PhasePermutation: how the CHP is electrically connected (refer to the electrical

drawing/wiring).

6. RatedActivePower: the maximum active power that can be delivered by the

invertor/logger (refer to the manual of the invertor/logger or the settings of the logger).

7. RatedReactivePower: the maximum reactive power that can be delivered by the

invertor/logger (refer to the manual of the invertor/logger or the settings of the logger).

8. MinimumPower: the minimum power level that the CHP can be run on (typically

between 70 and 50% of full power).

Important note

The parent collector and RTU unit must already exist for the configuration to be successful.

If there is no parent collector or RTU, the field should be empty. At least an RTU or parent

collector should be present in the config.

2.3.8 DataHub

When the PCU is an Advanced version, the DataHub must be configured. The DataHub

connection allows to push data to the MQTT program instance. There are only a few

parameters that must be configured to enable the connection to the DataHub.

MINT PCU Page 15 of 28

Figure 12: DataHub config method

1. AccesSignature: The specific PLC access signature to the DataHub.

2. DNS IP: the DNS IP address (default 8.8.8.8, change if necessary).

3. RTU energy report

• Disable: disables the reporting to the DataHub.

• Enable Individual: enables reporting (sends 1 message for each RTU asset).

• Enable Array: enables reporting (sends 1 message for all RTU assets).

4. Collector energy report

• Disable: disables the reporting to the DataHub.

• Enable Individual: enables reporting (sends 1 message for each collector asset).

• Enable Array: enables reporting (sends 1 message for all collector assets).

5. Solar energy report

• Disable: disables the reporting to the DataHub.

• Enable Individual: enables reporting (sends 1 message for each solar asset).

• Enable Array: enables reporting (sends 1 message for all solar assets).

6. Wind energy report

• Disable: disables the reporting to the DataHub.

• Enable Individual: enables reporting (sends 1 message for each wind asset).

• Enable Array: enables reporting (sends 1 message for all wind assets).

7. CHP energy report

• Disable: disables the reporting to the DataHub.

• Enable Individual: enables reporting (sends 1 message for each CHP asset).

• Enable Array: enables reporting (sends 1 message for all CHP assets).

When the DataHub functionality is used you should also call the "Input_Datahub" and

"Output_Datahub" methods to connect the data to the MQTT program instance.

2.3.9 Final steps

For the configuration to be loaded in the methods, "Configuration_Ready" and

"Control_Enable" should be called.

Figure 13: Ready and control enable method

By doing this, the program will start to link all the assets internally. If an error occurs, refer

to the diagnostic structure on the output of the "PCU_FB_SmartControl_Master_Control" or

"PCU_FB_SmartControl_Slave_Control" function block. If everything is configured properly,

the output xActive should become TRUE. If the "disable" parameter in the "Control_Enable"

MINT PCU Page 16 of 28

method is used, the PLC will put all solar assets to 100%, and all wind and CHP assets will

be set to 0% and will not be controlled. The PLC can still control the switches.

2.4 Input - Output

In the PCU V3 library there are in- and output structures defined to easily integrate the

communication protocols of the Belgian grid utility operators. These input and outputs are

based on the IO standardisation that is used in the PCU cabinet that can be delivered by

Phoenix Contact Belgium.

There are 4 standardised IO functions that can be used in the program.

1. PCU_FC_MasterInputs: Structuring the Master cabinet inputs.

2. PCU_FC_MasterOutputs: Structuring the Master cabinet Outputs.

3. PCU_FC_SlaveInputs: Structuring the Slave cabinet inputs.

4. PCU_FC_SlaveOutputs: Structuring the Slave cabinet Outputs.

By reading in the input word of the input card and coupling it to the input of the function,

the structure of the IO will be mapped automatically. This is also the case for the outputs,

but the other way around, couple the structure to the function and the return will give the

word output that can be coupled to the output card.

If the standardised IO is not used, you can make the coupling to the In/Out structure

yourself in order to have a structured program (not mandatory, but preferred).

To visualise the IO on the HMI, you can make use of the "PCU_FC_Status" function to assign

names to the input/output word and show them on the HMI. This function and its HMI

object ("Status") are dynamic, meaning, when string inputs are not used, they will not be

shown on the HMI.

2.5 Assets

2.5.1 RTU

2.5.1.1 General

The RTU asset in the PCU library is the asset that is responsible for the power control of the

site. There can be up to 4 RTU power control loops (and a minimum of one) in the control

logic. For each control loop you must select one of the following RTU interface function

blocks:

• PCU_FB_SmartControl_RTU_Fluvius_IEC104: For communication with Fluvius over

IEC104 protocol.

• PCU_FB_SmartControl_RTU_ORES_RS485_Single: For communication with ORES over

RS485 protocol for a single control loop.

• PCU_FB_SmartControl_RTU_ORES_RS485_Multi: For communication with ORES over

RS485 protocol for multiple control loops.

• PCU_FB_SmartControl_RTU_Other: To control the control loop when no RTU is present

on-site or when a modification of the RTU signal is done or when the specific RTU

interface is not made for the PCU library.

MINT PCU Page 17 of 28

In these RTU interface function blocks all the necessary communication parameters and

functions are integrated so it can easily be integrated in the control function. Just drag and

drop the right interface in the program, connect the data interface to the control logic,

assign the configuration in the configuration of the control logic and it is done. Each RTU

function block has some basic methods, as well as some specific methods that can be used

for controlling the control loop. The basic methods are:

• Input_DisconnectCmd: When used and the input is TRUE, this will send a disconnect

command to all production units, when they do not disconnect their main disconnect,

the refuse switch will also disconnect in the time that is configured for the specific

production unit.

• Input_StatusGridRelay: When used and the input is FALSE, this will trigger the control

logic to ramp down the power to 0.

• Output_InstallationOk: When the return is TRUE, all communication to the production

units of that control loop.

• Output_DisconnectClosed: When the return is TRUE, at least one of the main

disconnect switches of the production units is closed.

• Output_DisconnectOpen: When the return is TRUE, at least one of the main disconnect

switches of the production units is opened.

• Output_RefusesClosed: When the return is TRUE, at least one of the main back-ups.

(refuse) switches of the production units is closed.

• Output_RefusedOpen: When the return is TRUE, at least one of the main back-ups.

(refuse) switches of the production units is opened.

2.5.1.2 Fluvius IEC104

Fluvius communicates with the PLC using the IEC104 protocol. This protocol is

standardised in different European countries to perform telecommunication with the grid

operator. To work with this protocol, an extra license must be ordered. The function block

itself in the PCU library has all parameters assigned internally to perform the necessary

control. Fluvius itself communicates its setpoints in a range between -100 and +100%. If

the configuration is done properly, it will be scaled to the right values internally. On top of

this, there is a reactive control by which Fluvius can determine whether they want control of

the reactive power or if this can be chosen locally. All of this is managed inside the function

block of the RTU. The interface block has some specific Fluvius methods that can be used

to control the installation.

Figure 14: Fluvius RTU Interface

• Output_GetActivePowerPU: Returns the active power production value of the selected

power production unit (PU) that is being received by Fluvius (this must be set up by

Fluvius in their system).

MINT PCU Page 18 of 28

• Output_GetActivePowerPU: Returns the reactive power production value of the selected

power production unit (PU) that is being received by Fluvius (this must be set up by

Fluvius in their system).

• Output_GetVoltages: Returns the voltage of the selected phase that is being received by

Fluvius (this must be set up by Fluvius in their system).

When connection to Fluvius is achieved, the output xConnected on the interface will turn

TRUE. If an error occurs, look at the diagnose structure that is provided to see what the

fault is.

Important note

One of the PLC ethernet adapters must be set up with an IP address of 172.31.254.102 and

subnet mask 255.255.255.252 with no default gateway. In the case that the PLC firewall is

configured, make sure that port 2404 is inside the configuration. Use of an ethernet

extension card is recommended.

2.5.1.3 ORES RS485 Single

ORES makes use of serial communication to communicate the setpoints to the PLC, this

function block can only receive one setpoint of one control loop with ORES. To make sure all

communication is internal, the necessary scaling is done to work with the control logic.

Figure 15: ORES RTU Interface

Make sure all parameters in the configuration match the 120% value of ORES. ORES sends

data setpoints in MW, by which the scaling to Watts is done internally. This also happens

the other way around, so ORES receives our production figures. The O-One logic that ORES

uses for controlling the installation is also included in the interface function block. To

modulate power, the watchdog of ORES must be TRUE, otherwise the fallback value (in the

configuration) will be used. ORES has some specific methods that can be used:

• Output_UndelayedActivePower: Returns the active power setpoint from ORES without

the O-One delay.

• Output_UndelayedReactivePower: Returns the reactive power setpoint from ORES

without the O-One delay.

When communication with ORES is established, the output xConnected will be TRUE. If an

error occurs, check the diagnose output structure.

Important note

Serial card "AXL SE RS485" is supported, "AXL F RSUNI" could lead to issues.

MINT PCU Page 19 of 28

Parameters in the serial card must be set to RS485, Baud: 38400, parity bits: 8, parity:

even, 1 stop bit.

Make use of the Phoenix Contact standardised serial interface parameters for ORES to

make sure that all data is sent and received on the right registers, the setpoints coming

from ORES are standard negative as well as the feedback to them.

It is preferred that the methods "Input_xxxxxx" are called before the block call and

"Output_xxxx" after the block call to have the most recent process data in the interfaces.

2.5.1.4 ORES RS485 Multi

ORES makes use of serial communication to communicate the setpoints to the PLC, this

function block can send and receive the 4 setpoints of all control loops at once in the case

that multiple control loops are used. To make sure all communication is internal, the

necessary scaling is done to work with the control logic.

Figure 16: ORES RTU Interface

Make sure all parameters in the configuration match the 120% value of ORES. ORES sends

data setpoints in MW, by which the scaling to Watts is done internally. This also happens

the other way around, so ORES receives our production figures. The O-One logic that ORES

uses for controlling the installation is also included in the interface function block. To

modulate power, the watchdog of ORES must be TRUE, otherwise the fallback value (in the

configuration) will be used. ORES has some specific methods that can be used:

• Output_UndelayedActivePower: Returns the active power setpoint from ORES without

the O-One delay.

• Output_UndelayedReactivePower: Returns the reactive power setpoint from ORES

without the O-One delay.

When communication with ORES is established the output xConnected will be TRUE. If an

error occurs, check the diagnose output structure. You must assign the 4 names that are

also used in the configuration of the smart control logic. Each control loop has its own

production unit number in the method of the function block that corresponds with the name

of that production unit (sName1 corresponds with ePCU_SmartControl_PU1, sName2 with

the enumeration PU2, ...).

Important note

Serial card "AXL SE RS485" is supported, "AXL F RSUNI" could lead to issues.

MINT PCU Page 20 of 28

Parameters in the serial card must be set to RS485, Baud: 38400, parity bits: 8, parity:

even, 1 stop bit.

Make use of the Phoenix Contact standardised serial interface parameters for ORES to

make sure that all data is sent and received on the right registers, the setpoints coming

from ORES are standard negative as well as the feedback to them.

It is preferred that the methods "Input_xxxxxx" are called before the block call and

"Output_xxxx" after the block call to have the most recent process data in the interfaces.

2.5.2 Collector

The collector interface is made to control the site power production and perform load

balancing on the electrical circuits. The collector interface needs a name that is linked to

the configuration. The status of the collector must also be known. If the collector is

connected to the PLC, the input xConnected must be TRUE.

Figure 17: Collector Interface

Each collector can be configured so the available data can be read in using the methods:

• Input_Measurements: (Requirement for control) This method is the minimum

requirement for the control system to work.

• Input_ReactivePower: (Recommended for visualisation) Adds reactive power data to

the API.

• Input_TotalEnergy: (Recommended for visualisation) Adds energy data to the API.

• Input_Energy: Adds phase energy values to the API.

• Input_Voltage: Adds phase voltage values to the API.

• Input_ConductorVoltage: Adds line voltage data to the API.

• Input_Powerfactor: Adds phase power factor values to the API.

• Input_TotalPowerfactor: Adds power factor values to the API.

• Input_Frequency: Adds frequency values to the API.

A maximum of 20 collector interface function blocks can be used per PLC. If this limit is

exceeded, the values will not be used.

Important note

At least 1 collector must be configured, if there are no physical measurement devices in the

field there must be a virtual collector. It is preferred to have 1 collector (measurement

device) per slave cabinet.

MINT PCU Page 21 of 28

2.5.3 Solar

The solar interface is responsible for interfacing with the solar inverter/logger and the

control logic. In this interface, all data that is available must be coupled and the outputs

must be linked to the control logic of the inverter. The solar interface needs a name that is

linked to the one in the configuration to work properly. The connection status to the

inverter/logger must also be linked to the xConnected input and the solar interface to the

one on the control logic. Additional data can be coupled via the methods:

• Input_Measurements: (Requirement for control) This method is the minimum

requirement for the control system to work.

Figure 18: Solar Interface

• Input_Activepower: Adds phase active power values to the API.

• Input_Reactivepower: Adds phase reactive power values to the API.

• Input_TotalEnergy: (Recommended for visualisation) Adds energy data to the API.

• Input_Energy: Adds phase energy values to the API.

• Input_Voltage: Adds phase voltage values to the API.

• Input_Powerfactor: Adds phase power factor values to the API.

• Input_TotalPowerfactor: Adds power factor values to the API.

• Input_DecoupleSwitches: Adds the ability to read in the status of the main and backup

disconnect switches (when used and status is open, setpoint will be set to 0).

• Output_DecoupleSwitch_Decouple: Adds the ability to disconnect the solar from the

grid when the command is given by the RTU ("Input_DecoupleSwitches" must be used).

When command is given, this output will give a 1sec pulse.

• Output_DecoupleSwitch_Enable: Adds the ability to reconnect the solar to the grid

("Input_DecoupleSwitches" must be used). When command is given, this output will be

continuous.

• Output_RefuseSwitch_Decouple: Adds the ability to disconnect the solar from the grid

with the backup switch in case of failure to open the main in 200ms

("Input_DecoupleSwitches" must be used). When the command is given, this output will

give a 1sec pulse.

2.5.4 Wind

The wind interface is responsible for interfacing with the wind controller and the control

logic. In this interface, all data that is available must be coupled and the outputs must be

MINT PCU Page 22 of 28

linked to the control logic of the wind controller. The wind interface needs a name that is

linked to the one in the configuration to work properly.

Figure 19: Wind Interface

The connection status to the controller must also be linked to the xConnected input and the

wind interface to the one on the control logic. Additional data can be coupled via the

methods:

• Input_Measurements: (Requirement for control) This method is the minimum

requirement for the control system to work.

• Input_Activepower: Adds phase active power values to the API.

• Input_Reactivepower: Adds phase reactive power values to the API.

• Input_TotalEnergy: (Recommended for visualisation) Adds energy data to the API.

• Input_Energy: Adds phase energy values to the API.

• Input_Voltage: Adds phase voltage values to the API.

• Input_Currents: Adds currents values to the API.

• Input_Powerfactor: Adds phase power factor values to the API.

• Input_TotalPowerfactor: Adds power factor values to the API.

• Control_Release: Adds the ability to shut down the unit when input is FALSE.

• Input_DecoupleSwitches: Adds the ability to read in the status of the main and backup

disconnect switches (when used and status is open, setpoint will be set to 0).

• Output_DecoupleSwitch_Decouple: Adds the ability to disconnect the solar from the

grid when command is given by the RTU ("Input_DecoupleSwitches" must be used).

When command is given, this output will give a 1sec pulse.

• Output_DecoupleSwitch_Enable: Adds the ability to reconnect the wind to the grid

("Input_DecoupleSwitches" must be used). When command is given, this output will be

continuous.

• Output_RefuseSwitch_Decouple: Adds the ability to disconnect the wind from the grid

with the backup switch in case of failure to open the main in 200ms

("Input_DecoupleSwitches" must be used). When command is given, this output will

give a 1sec pulse.

2.5.5 CHP

The CHP interface is responsible for interfacing with the CHP unit controller and the control

logic. In this interface, all data that is available must be coupled, and the outputs must be

linked to the control logic of the unit. The CHP interface needs a name that is linked to the

one in the configuration to work properly.

MINT PCU Page 23 of 28

Figure 20: CHP Interface

The connection status to the controller must also be linked to the xConnected input and the

CHP interface to the one on the control logic. Additional data can be coupled via the

methods:

• Input_Measurements: (Requirement for control) This method is the minimum

requirement for the control system to work.

• Input_Activepower: Adds phase active power values to the API.

• Input_Reactivepower: Adds phase reactive power values to the API.

• Input_TotalEnergy: (Recommended for visualisation) Adds energy data to the API.

• Input_Energy: Adds phase energy values to the API.

• Input_Voltage: Adds phase voltage values to the API.

• Input_Powerfactor: Adds phase power factor values to the API.

• Input_TotalPowerfactor: Adds power factor values to the API.

• Input_DecoupleSwitches: Adds the ability to read in the status of the main and backup

disconnect switches (when used and status is open, setpoint will be set to 0).

• Output_DecoupleSwitch_Decouple: Adds the ability to disconnect the solar from the

grid when command is given by the RTU ("Input_DecoupleSwitches" must be used).

When command is given, this output will give a 1sec pulse.

• Output_DecoupleSwitch_Enable: Adds the ability to reconnect the CHP to the grid

("Input_DecoupleSwitches" must be used). When command is given, this output will be

continuous.

• Output_RefuseSwitch_Decouple: Adds the ability to disconnect the CHP from the grid

with the backup switch in case of failure to open the main in 200ms

("Input_DecoupleSwitches" must be used). When command is given, this output will

give a 1sec pulse.

2.6 Portal (option)

When the client chooses to visualise data on the portal you must use the DataHub program

instance ("MQTT_MINT") delivered in the PCU library. This program instance is made so no

extra input is required, and all settings and communication parameters are set inside the

control logic. This program instance should be called every 25ms with a watchdog of 0. In

the program instance of the control function the input and output "strDataFromDatahub"

and "strDataToDatahub" must be used. The input data of the input method must be an in

MINT PCU Page 24 of 28

port and be linked to the MQTT program instance. The return value of the output method

must be configured as out port and linked to the DataHub instance.

Figure 21: DataHub method linking

Both datatypes are compatible so they can be linked to each other. Once the connection of

the ports is made, the MQTT broker can connect to the MINT DataHub, and data can start to

flow between the systems.

Make sure the credentials are filled in to the configuration.

Check the DNS IP address in case the client has the DNS linked otherwise.

Check that the certificate of the MQTT communication is in the PLC memory.

2.7 eHMI (option)

Figure 22: eHMI

For the PCU library, there is a template HMI page on which all data is displayed. The eHMI

is set up dynamically, so by clicking buttons and scrolling all assets can be displayed. The

HMI is a feature made for commissioning and will deactivate after midnight. The eHMI can

only be temporarily enabled by password unless the feature is ordered. In the case that the

eHMI is ordered the data will always be displayed. The time displayed on the eHMI is the

local time zone, in the logs the local time is also used.

MINT PCU Page 25 of 28

2.8 Debugging

For debugging you can use the diagnose structures available on the function blocks. If an

error occurs, it will always be displayed in the diagnose structure. In case of unclear

messaging, contact your Phoenix Contact project engineer.

MINT PCU Page 26 of 28

3 Software Change

3.1 V3.0.0

• Initial release version

3.2 V3.0.1

PCU_FB_RTU_ORES_RS485

• Changes to the control logic (inversion of values).

PCU_FB_SmartControl_ORES_RS485

• Changes to the control logic (inversion of values).

MQTT_MINT

• Changed certificate for the MQTT connection (future compatibility).

• Added DNS IP in data structure.

PCU_FB_SmartControl_Master_Controller

• Added DNS IP to the DataHub config method.

PCU_FB_SmartControl_Slave_Controller

• Added DNS IP to the DataHub config method.

3.3 V3.0.2

PCU_FB_Smartcontrol_Solar_DataInterface

• Changes in switch’s logic.

• Added configurable time in the switch’s method.

PCU_FC_MasterInputs

• Name change of function from RTUInputs.

PCU_FC_MasterOutputs

• Name change of function from RTUOutputs.

PCU_FC_SlaveInputs

• Name change of function from NobInputs.

PCU_FC_SlaveOutputs

• Name change of function from NobOutputs.

• Changed mapping Out1 = Disconnect close, Out2 = Refuse pulse.

PCU_FB_SmartControl_Master_Controller

• Changed internal logic for switch commands.

• Changed behaviour of setpoint based on the feedback of the switches.

MINT PCU Page 27 of 28

3.4 V3.1.0

New

• Added PCU_FB_RTU_ORES_RS485_Multi, legacy communication with up to 4 RTU’s

combined in 1.

• Added PCU_FB_SmartControl_ORES_RS485_Multi, for integration in the controller with

up to 4 control loops.

• PCU_FB_SmartControl_Interface_Wind, for the control of wind assets.

• PCU_FB_SmartControl_Interface_CHP, for the control of CHP assets.

PCU_FB_SmartControl_Master_Control

• Added Wind and CHP interfaces.

• Added Wind and CHP in the control loop.

• Added Wind and CHP configuration methods.

• Added Wind and CHP data for the DataHub.

• Changed the DataHub methods to in-/output parameters.

• Improved disconnect CMD reaction time to < 150ms (@25ms cycle time) to all slaves.

• Changed license model.

• Changed eHMI functionality (added default dynamic eHMI page).

• Changed communication structure to slaves.

PCU_FB_SmartControl_Slave_Control

• Added Wind and CHP interfaces.

• Added Wind and CHP data for the DataHub.

• Changed the DataHub methods to in-/output parameters.

• Changed license model.

• Changed communication structure to master.

PCU_FB_RTU_ORES_RS485

• Changed name to PCU_FB_RTU_ORES_RS485_Single.

• Changed xConnected parameter to include checking for receiving of new data.

• Changed in-/output parameters to methods.

• Changed configuration input parameters to methods.

PCU_FB_RTU_Fluvius_IEC104

• Added license check in diagnose.

• Changed in-/output parameters to methods.

• Changed configuration input parameters to methods.

PCU_FB_SmartControl_RTU_ORES_RS485.

• Added method Output_DisconnectOpen.

• Added method Output_RefuseOpen.

• Changed name to PCU_FB_SmartControl_ORES_RS485_Single.

• Changed xConnected parameter to include checking for receiving of new data.

• Added compatibility for positive and negative ORES setpoints/feedback.

MINT PCU Page 28 of 28

PCU_FB_SmartControl_RTU_Fluvius_IEC104

• Added method Output_DisconnectOpen.

• Added method Output_RefuseOpen.

• Added license check in diagnose.

PCU_FB_SmartControl_Solar

• Added xDisconnectOpen and xRefuseOpen to method Input_StatusSwitches.

