
15,4015,40

1

PLCnext Technology

PLCnext Engineer

Selección, nivel básico y ejemplos de
lenguaje de alto nivel

Ingeniero Antonio Gordillo Abril 2021

PLCnext
Control

Functional
Safety

Edge
Computing

Security PLCnext
Engineer

PLCnext
Stoe

PLCnext
Community

Competitive
Advantages

Brief
overview

15,4015,40

PLCnext Technology

PLCnext Technology Ecosystem

15,4015,40

Webinars

Agenda

Selección

Nivel Básico PLCnext Engineer

Nivel Básico PLCnext Engineer HMI

 Lenguajes de Alto Nivel

Herramientas

15,4015,40

15,4015,40

Fast and flexible configuration

 C-Code, Simulink models, function components,
IEC61131-3, Safety, HMI

Extendable

 By licensed add-ins like the Viewer for Simulink

Easy handling

 Intuitive user interface

 Clear structures

PLCnext Technology Configuration and Engineering
PLCnext Engineer

The software for configuration and engineering

5

1046008

PLCNEXT ENGINEER

15,4015,40

PLCnext Engineer
Selección

6

15,4015,40

Note Open Source

Area de descargas

7

Change Notes

Activation Wizard

Industrial Security

PLCnext Engineer

15,4015,40

 PLCnext Engineer

Quick Start Guide

8

15,4015,40

9

Quick Start Guide

15,4015,40

 Licenses

 Button Configure

 Activation Wizard

PLCnext Engineer
Quick Start Guide

10

15,4015,40

 PLCnext Engineer

Quick UM
Quick Start Guide

11

15,4015,40

Selección del software

 Ir a página www.phoenixcontact.com/global

 1046008 PLCNEXT ENGINEER

PLCnext Engineer
Selección Software actual PLCnext Engineer 2020.6.2

12

15,4015,40

Software DEMO

 Ir a página www.phoenixcontact.com/global

 1046008 PLCNEXT ENGINEER

PLCnext Engineer
Selección Software DEMO

13

15,4015,40

Complete Integrated System
PLCnext Engineer

GLUE

Safety
programming

Visualization

Network
configuration +

diagnostic +
security

Standard
programming

14

15,4015,40

Information Architecture
PLCnext Engineer

15

In
s

ta
n

ce
s

Ty
p

e
s

Editor Group Editor Group

Editor 1

Editor n

Editor 1

Editor n

Cross functions

15,4015,40

 Deeply integrated
 Based on central handling

 Scalable
 From small scale controllers to IPCs

 No client installation
 Modern web browser

 Technology-neutral
 Screens are stored in neutral format

 Lightweight
 Low resource demands on PLC

Integrated Visualization Editor
PLCnext Engineer

16

15,4015,40

Visualization Runtime Concept
PLCnext Engineer

17

Client(s)

variable
values

One project
(PLC + HMI)

WEB-SERVER

HMI application
HMI project

15,4015,40

 Configurar

Página Internet Internacional
PLCNEXT ENGINEER

18

15,4015,40

License Structure
PLCnext Engineer

Configuration
Programming
Visualization

……
Code

Analysis
Code

Analysis
ReportingReporting

HMI
Trending

HMI
Trending

FL
Config

FL
Config

IEC
61850

IEC
61850

….….

Safety
Extended

Safety
Extended

Vis.
Wizard

Vis.
Wizard

HMI
Alarm
HMI

Alarm
Safety
Basic
Safety
Basic

Source
Code

Management

Source
Code

Management

19

15,4015,40

Free of charge

License Structure
PLCnext Engineer

Configuration
Programming
Visualization

……
Code

Analysis
Code

Analysis
ReportingReporting

HMI
Trending

HMI
Trending

FL
Config

FL
Config

IEC
61850

IEC
61850

….….

Safety
Extended

Safety
Extended

Vis.
Wizard

Vis.
Wizard

HMI
Alarm
HMI

Alarm
Safety
Basic
Safety
Basic

Source
Code

Management

Source
Code

Management

Free of charge

Licensed AddIns

Icon = available Add-In No icon = Idea about future Add-Ins 20

15,4015,40

PLCnext Engineer 1046008
Opciones

21

15,4015,40

PLCnext Engineer 1046008
Opciones

22

15,4015,40

PLCnext Engineer 1046008
Opciones

23

15,4015,40

PLCnext Engineer 1046008
Opciones

24

15,4015,40

PLCnext Engineer 1046008
Opciones

25

15,4015,40

 Represented as a function block

 Automatic generated TypeInfo and
StateInfo structure

 Error handling

 Directly connected transitions

 Transitions in separate worksheets
(FBD, ST, LD)

 Operation modes:
Automatic, Manual Step, Halted

Sequential Function Chart – SFC
PLCnext Engineer

26

15,4015,40

 Compact SFC

 STEP Interlock
can be used to control the execution of actions
associated to a step

 Pre-Execute worksheet

 Post-Execute worksheet

Sequential Function Chart – SFC
PLCnext Engineer

27

15,4015,40

Fully integrated Safety Programming

 TÜV Rheinland certified
according to IEC 61508

 Editor with common behavior
as known from standard
FBD or LD editor

 Low Variability Language support

 Network granular CRC checksums

 PROFIsafe Support

Functional Safety Programming
PLCnext Engineer

28

15,4015,40

Fully integrated Safety Programming

 Individual safety functions can be
protected by a verification function

 Background signal path analysis

 Background safe semantic analysis

 Diversely-redundant code generator

Functional Safety Programming
PLCnext Engineer

29

15,4015,40

 Model export as part of a
PLCnext library

 Drill-down into sub-models

 Online-values for In- and Out-Ports

Viewer for Simulink
PLCnext Engineer

30

15,4015,40

Viewer for Simulink
PLCnext Engineer 2019.0

 Global / Local Search

 Jumpable objects selected

 Display block
with online values

 Overwrite of GDS ports

 Jump to Type Model from Instance

 Online Indication on lines
for boolean in /out ports

31

15,4015,40

Application Control Interface (ACI)

Remote Control of the software:

Application.BuildPath (property)

Application.OpenProject (method)

Application.ProjectOpened (event)

Project.Close (method)

Project.Save (method)

Project.SaveAs (method)

Project.Closed (event)

…………

PLCnext Engineer

32

15,4015,40

Software License Distribution
PLCnext Engineer

33

Order

Article No.

Ticket

License

Ticket + Footprint

Phoenix Contact

e-Shop

Ticket Code: ABCD-EFGH-IJKL-MNOP-QRST

1

2

3

15,4015,40

 Version 1.1 HMI 2018

 Deactivating / Moving licenses

 Version 1.2 SPS 2018

 Network server for licenses

 Server list; authentication

 Borrowing of licenses
(can be returned to pool)

Activation Wizard
Licensing

34

15,4015,40

Electronic Software License on USB A
PLCnext Engineer

IF Design Award 2019

35

15,4015,40

Versioning
PLCnext Engineer

January
2020

PLCnext Engineer
2020.0 LTS

March
2020

PLCnext Engineer
2020.3

June
2020

PLCnext Engineer
2020.6

September
2020

PLCnext Engineer
2020.9

36

15,4015,40

Wikipedia:

Long-term support (LTS) …
… is a product lifecycle management policy in which a stable
release of computer software is maintained for a longer period of time
than the standard edition. The term is typically reserved for open-
source software, where it describes a software edition that is
supported for months or years longer than the software's standard
edition.

LTS Version
PLCnext Engineer

Source 2019/01: https://en.wikipedia.org/wiki/Long-term_support

37

15,4015,40

Release 2020.9Release 2020.6Release 2020.3

Feature-Driven Development

Trunk

Feature 1

Feature 2

Feature 3

Feature 4

Feature 7

Feature 5

Feature 6

Feature 8

Release 2020.0 LTS

38

PLCnext Engineer

15,4015,40

 Nivel Básico PLCnext Engineer

PLCnext Engineer

39

15,4015,40

E-Learning PLCnext Engineer Basics
PLCnext Community

40

15,4015,40

Chapter 2 Creating a Project
PLCnext Engineer Basics

41

15,4015,40

PLCnext Engineer Tutorial(s)
Video Youtube

42

15,4015,40

PLCnext Engineer Tutorial(s)
Video Youtube

43

15,4015,40

PLCnext Engineer Tutorial(s)
Video Youtube

44

15,4015,40

PLCnext Engineer Tutorial(s)
Video Youtube

45

15,4015,40

PLCnext Engineer Tutorial(s)
Video Youtube

46

15,4015,40

PLCnext Engineer Tutorial(s)
Video Youtube

47

15,4015,40

PLCnext Engineer Tutorial(s)
Video Youtube

48

15,4015,40

 Nivel Básico PLCnext Engineer HMI

PLCnext Engineer HMI

49

15,4015,40

E-Learning PLCnext Engineer HMI Basics
PLCnext Community

50

15,4015,40

Chapter 2
PLCnext Engineer HMI Basics Chapter

51

15,4015,40

PLCnext Engineer Tutorial(s)
Video Youtube

52

15,4015,40

Videos PLCnext Technology Eje Eléctrico SMC gobernado por un Google Home

Tutorials Videos
PLCnext Engineer

53

15,4015,40

PLCnext Engineer Tutorial(s)
Video Youtube

54

15,4015,40

PLCnext Engineer Tutorial(s)
Video Youtube

55

15,4015,40

PLCnext Engineer Tutorial(s)
Video Youtube

56

15,4015,40

PLCnext Engineer Tutorial(s)
Video Youtube

57

15,4015,40

PLCnext Engineer Tutorial(s)
Video Youtube

58

15,4015,40

PLCnext Engineer Tutorial(s)
Video Youtube

59

15,4015,40

PLCnext Engineer Tutorial(s)
Video Youtube

60

15,4015,40

PLCnext Engineer Tutorial(s)
Video Youtube

61

15,4015,40

PLCnext Engineer Tutorial(s)
Video Youtube

62

15,4015,40

How to set up an additional network card to your PLC with an
AXC F XT ETH 1TX | PLCnext Control

63

15,4015,40

 Phyton

 C++

 C++ Components and Programs

 C#

High Level Languages

64

15,4015,40

The new era of automation

PLCnext Technology – Python examples

15,4015,40

 General introduction to Python

 Hello World project

 Installation of packages

 Manual installation

 Installation via PIP

 Example 1: Modbus TCP with Python

 Example 2: MQTT with Python

 Q&A

Agenda
Python examples

15,4015,40

 is an interpreted, high-level programming language

 supports object-oriented and structured programming

 was developed in the early 1990s by Guido van Rossum as a follow-up to the language ABC

 Python is …

 platform independent

 characterized by its readability and shortness (for example by using spaces instead of curly brackets)

 designed to keep the fun in programming and that’s why the name “Python” was chosen as a tribute to
the comedian group Monty Python

 executed line by line and converted into low level machine code

General introduction to Python
Python examples

15,4015,40

 Python 3.8 is pre-installed on PLCnext Controls

 Pre-installed packages can be found in /usr/lib/python3.8

 Python code can be executed:

o directly within the command line

o as *.py script

Python on PLCnext Control
Python examples

15,4015,40

Hello World project
Python examples

Demo

15,4015,40

Python examples

Define server address

Specify whether data is to be read or written

Define register(s) to be read, get value(s)

Define register and value, then write data

Specify whether data is to be read or written

15,4015,40

Modbus TCP with Python
Python examples

Demo

Modbus TCP
Test server

Python based
Modbus TCP client

15,4015,40

Python code creation
Python examples

…

Useful information and examples can be found here, for example:

 https://pypi.org/project/paho-mqtt/
 https://github.com/eclipse/paho.mqtt.python/tree/master/examples

15,4015,40

Python examples

Execute the python script

Setup the communication to broker

Define topic and quality of service level

Value changes will be displayed, incl. time

15,4015,40

Python examples

Execute the python script

Setup the communication to broker

Define topic, QoS, retain and payload

15,4015,40

MQTT with Python
Python examples

Demo

Python based
MQTT client

Internet

MQTT test client

public
server

15,4015,40

Further information and examples
Python examples

 Python in Industrial Automation (plcnext-community.net)

 Modbus TCP with Python on AXC F 2152 (plcnext-community.net)

 OpenCV - Python, Red Light detection on PLCnext (plcnext-community.net)

 Machine Learning on PLCnext (plcnext-community.net)

15,4015,40

The new era of automation

PLCnext Technology – C++ Components and RSC services

15,4015,40

 General introduction

 Required software for C++ Programming

 C++ project structure

 C++ Component functions

 C++ Worker thread

 C++ Component interfaces (GDS ports)

 C++ Component instantiation

 C++ Remote Service Calls

Agenda
C++ Components

15,4015,40

PLCnext Control - System architecture
C++ Components

User
Programs

Linux Operating System

Middleware for Data Access

PLCnext Components
with Real-time Management

Matlab
Simulink

PG

(External)
Function

Extension

IEC
61131-3

PG

C++
PG

(Internal)
Function

Extension

15,4015,40

PLCnext Control - System architecture
C++ Components

User
Programs

Linux Operating System

Middleware for Data Access

PLCnext Components
with Real-time Management

Matlab
Simulink

PG

(External)
Function

Extension

IEC
61131-3

PG

C++
PG

(Internal)
Function

Extension

15,4015,40

 General introduction

 Required software for C++ Programming

 C++ project structure

 C++ Component functions

 C++ Worker thread

 C++ Component interfaces (GDS ports)

 C++ Component instantiation

 C++ Remote Service Calls (Overview)

Agenda
C++ Components

15,4015,40

Required software
C++ Components

- Preferred C++/text editor

C++ with Eclipse C++ with any further editor

- Command-Line Interface (PLCnCLI)

- Software Development Kit (SDK)

- Eclipse ≥ Neon

C++ with Eclipse

- Command-Line Interface (PLCnCLI)

- Software Development Kit (SDK)

- PLCnext Plugin for Eclipse

C++ with Visual Studio

- Visual Studio 2019

- Command-Line Interface (PLCnCLI)

- Software Development Kit (SDK)

- PLCnext Plugin for Visual Studio

More information: https://www.plcnext.help/te/Programming/Cpp/Cpp_programming/Required_Installations.htm

Available as one bundle on the Phoenix Contact homepage

15,4015,40

 General introduction

 Required software for C++ Programming

 C++ project structure

 C++ Component functions

 C++ Worker thread

 C++ Component interfaces (GDS ports)

 C++ Component instantiation

 C++ Remote Service Calls (Overview)

Agenda
C++ Components

15,4015,40

C++ project structure
C++ Components

Project name

Includes – Pre-included classes

Component files

Program files

Folder with compilation output

CMake list for cross-compilation

15,4015,40

Templates for *.cpp and *.hpp
C++ Components

COMP_SimpleAnd.hpp COMP_SimpleAnd.cpp

15,4015,40

Project creation

Demo

C++ Components

15,4015,40

Demo 1: Project creation
C++ Components

Create a new C++ project and use the following names in it:

Project name: Proj_AddTwoValues

Project namespace: LIB_AddTwoValues

Component name: COMP_AddTwoValues

Program name: PG_AddTwoValues

15,4015,40

Real-time execution via user programs
C++ Components

Demo

15,4015,40

Demo 2: Real-time execution via user programs
C++ Components

1. Program within the user program that two values provided via ports can be added.
The result should be provided by the C++ program.

2. Save and compile the project.

3. Insert the created library into your PLCnext Engineer project.

4. Call the program within a cyclic task and assign the ports.

5. Download the project to the PLCnext Control and check whether the result can be

calculated correctly.

6. Then switch back to your C++ project, open the component files and gain an overview

about the content therein.

15,4015,40

 General introduction

 Required software for C++ Programming

 C++ project structure

 C++ Component functions

 C++ Worker thread

 C++ Component interfaces (GDS ports)

 C++ Component instantiation

 C++ Remote Service Calls (Overview)

Agenda
C++ Components

15,4015,40

Pre-defined functions
C++ Components

void Initialize()

void SubscribeServices()

void LoadSettings(const String& SettingsPath)

void SetupSettings()

void PublishServices()

void LoadConfig()

void SetupConfig()

void ResetConfig()

void Dispose()

E
X
E
C
U
T
I
O
N

O
R
D
E
R

15,4015,40

Pre-defined functions
C++ Components

Demo

15,4015,40

Demo 3: Pre-defined functions
C++ Components

1. Look at the functions declared in the component header file template. Add "Dispose".

2. Change to the *.cpp file of the component. Place a programming here, which creates a

different log file entry in each function.

3. Save and compile the C++ project.

4. Download the synchronized PLCnext Engineer project to the PLCnext Control.

5. Establish an SFTP connection, e.g. via WinSCP and open the log file.

6. Analyze the order and number of calls of the C++ functions. Also restart the firmware

processes via command-line (sudo /etc/init.d/plcnext restart) and see which

function is called when.

15,4015,40

 General introduction

 Required software for C++ Programming

 C++ project structure

 C++ Component functions

 C++ Worker thread

 C++ Component interfaces (GDS ports)

 C++ Component instantiation

 C++ Remote Service Calls (Overview)

Agenda
C++ Components

15,4015,40

Worker thread
C++ Components

Demo

15,4015,40

Demo 4: Worker thread
C++ Components

1. Include the needed header for working with worker threads within the header file.

2. Add the namespace as used namespace within this project.

3. Create a function declaration for the thread function to be processed cyclically.

4. Declare an instance name for the thread.

5. Save your changes and open the *.cpp file. Here configure the thread.

6. The thread must be started with the call of “LoadConfig” and stopped with “ResetConfig”.

7. Add the thread function and program that a log file entry can be created cyclically.

8. Save and compile the C++ project. Then send the PLCnext Engineer project to the PLC.

9. Now open the log file and check whether you can see the log entries.

15,4015,40

 General introduction

 Required software for C++ Programming

 C++ project structure

 C++ Component functions

 C++ Worker thread

 C++ Component interfaces (GDS ports)

 C++ Component instantiation

 C++ Remote Service Calls (Overview)

Agenda
C++ Components

15,4015,40

Port definition within the header file
C++ Components

15,4015,40

Exemplary port configurations
C++ Components

public:

//#attributes(Hidden)
struct Ports
{

//#attributes(Output|Opc)
Arp::boolean OUTPORT_xLED = false;

};

//#port
Ports ports;

public:

//#attributes(Hidden)
struct Ports
{

//#name(OUTPORT_xLED)
//#attributes(Output|Opc)
Arp::boolean LED = false;

};

//#port
Ports ports;

OUTPORT_xLED is to be
used in the code and as port name

LED is used as variable name within the C++ code,
but OUTPORT_xLED is the port name

15,4015,40

C++ Component ports
C++ Components

Demo

15,4015,40

Demo 5: C++ Component ports
C++ Components

1. Open the *.hpp file again. Here, create a component port structure with three input port

elements (two for the summands, one for the result)

2. Save the changes and open the *.cpp file of the component. Then insert a programming

for the worker thread function. The function should make it possible that whenever the

result value changes, the new equation is written to the log file.

3. Save and compile the C++ project.

4. The port assignment can be done within the general port list in PLCnext Engineer.

5. Save and download the project to the PLC.

6. Change the summands several time, e.g. via overwrite in debug mode, and check

whether the corresponding entries appear in the log file.

15,4015,40

Manual GDS configuration for Component Ports (1)

 Custom GDS file can be stored anywhere on the PLC but must be linked in the default
GDS configuration file

C++ Components

<?xml version="1.0" encoding="utf-8" ?>
<GdsConfigurationDocument
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.phoenixcontact.com/schema/gdsconfig"
schemaVersion="1.0" >

<Includes>
<Include path="$ARP_PROJECT_CURRENT_DIR$/Plc/Gds/*.gds.config" />
<Include path="/opt/plcnext/projects/SimpleAnd/SimpleAnd.gds.config" />

</Includes>
</GdsConfigurationDocument>

Example

 /opt/plcnext/projects/Default/Plc/Gds/Default.gds.config

15,4015,40

Manual GDS configuration for Component Ports (2)

 Custom GDS configuration needs to be done in XML

C++ Components

<?xml version="1.0" encoding="utf-8“ ?>
<GdsConfigurationDocument xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" schemaVersion="1.0"
xmlns="http://www.phoenixcontact.com/schema/gdsconfig">

<ComponentTaskRelations />
<Connectors>

<Connector startPort="Arp.Io.AxlC/0.IN00" endPort="COMP_SimpleAnd_Test1/INPORT_xVar1" />
<Connector startPort="Arp.Io.AxlC/0.IN01" endPort="COMP_SimpleAnd_Test1/INPORT_xVar2" />
<Connector startPort="COMP_SimpleAnd_Test1/OUTPORT_xResult" endPort="Arp.Io.AxlC/0.OUT00" />

</Connectors>
</GdsConfigurationDocument>

15,4015,40

 General introduction

 Required software for C++ Programming

 C++ project structure

 C++ Component functions

 C++ Worker thread

 C++ Component interfaces (GDS ports)

 C++ Component instantiation

 C++ Remote Service Calls (Overview)

Agenda
C++ Components

15,4015,40

Component instantiation
C++ Components

Component

User
Program1

User
Program2

User
Program3

Component

*.plm.config

… is used to manage
components with user

programs.

… is used to manage
components without

user programs.

*.acf.config

*.plm.config

… can also be used for
components without

user programs.

15,4015,40

Comparison of PLM and ACF instantiation
C++ Components

Program Library Manager (PLM) Application Component Framework (ACF)

Both use XML as language within the configuration file, and the XML structure is very similar

Only components managed by the PLM can also
provide programs that can be instantiated in ESM
tasks

ACF components can not provide user programs.

Only components that are managed by the PLM can
be stopped, changed and started by downloading
from the PLCnext Engineer. This also applies to
ESM tasks and the programs instantiated therein.

For components managed by the ACF, the firmware
must be stopped, started, or restarted.
So, components managed by the ACF will persist
even if the PLC program is stopped, deleted or
started.

Access to the GDS can be done by using ports.

15,4015,40

Manual PLM configuration files

 Custom PLM file can be stored anywhere on the PLC but must be linked within the default PLM
configuration file

 Example:

C++ Components

/opt/plcnext/
projects/MyComponents/

My.plm.config

/opt/plcnext/
projects/Default/Plc/Plm/

default.plm.config

Links to

15,4015,40

ACF configuration files
C++ Components

<?xml version="1.0" encoding="UTF-8"?>
<AcfConfigurationDocument

xmlns="http://www.phoenixcontact.com/schema/acfconfig"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.phoenixcontact.com/schema/acfconfig.xsd"
schemaVersion="1.0" >
<Processes>

<Process name="Proj_RSC_ServicesProcess" settingsPath="$ARP_ACF_SETTINGS_FILE$" />
</Processes>
<Libraries>

<Library name="LIB_RSC_Services.Proj_RSC_ServicesLibrary" binaryPath="/opt/plcnext/projects/MyComponents/libProj_RSC_Services.so" />
</Libraries>
<Components>

<Component name="COMP_RSC_Services1" type="LIB_RSC_Services::COMP_RSC_Services“
library="LIB_RSC_Services.Proj_RSC_ServicesLibrary" />

</Components>
</AcfConfigurationDocument>

 /opt/plcnext/projects/Default/<constum name>.acf.config

15,4015,40

Creation of an ACF Component
C++ Components

Demo

15,4015,40

Demo 6: Creation of an ACF component
C++ Components

1. Create a new C++ project, but now choose „PLCnext ACF project“ as project template.

2. Use the following names:

3. Then create a worker thread like before for the PLM component.

4. Save and compile the project.

5. Copy the shared object (*.so) and the adjusted ACF configuration file to the PLC.

6. Restart the PLCnext processes via command.

7. Open the log file to check if the ACF component and the worker thread can be executed .

Project name: Proj_RscServices

Project namespace: RscServices

Component name: COMP_RscServices

15,4015,40

 General introduction

 Required software for C++ Programming

 C++ project structure

 C++ Component functions

 C++ Worker thread

 C++ Component interfaces (GDS ports)

 C++ Component instantiation

 C++ Remote Service Calls (Overview)

Agenda
C++ Components

15,4015,40

Remote Service Calls (RSC services)
C++ Components

User
Programs

Linux Operating System

Middleware for Data Access

PLCnext Components
with Real-time Management

Matlab
Simulink

PG

(External)
Function

Extension

IEC
61131-3

PG

C++
PG

(Internal)
Function

Extension
RSC

15,4015,40

Services
C++ Components

Service Namespace Functions

IAcyclicCommunicationService Arp/Io/Axioline/Services PdiRead,
PdiWrite

IAcyclicCommunicationService Arp/Io/ProfinetStack/Controller/Service RecordRead,
RecordWrite

IDeviceInfoService Arp/Device/Interface/Services GetItem,
GetItems

IDeviceStatusService Arp/Device/Interface/Services GetItem,
GetItems

IDataAccessService Arp/Plc/Gds/Services Read, ReadSingle,
Write, WriteSingle

15,4015,40

RSC service for Axioline
C++ Components

Demo

15,4015,40

Demo 7: RSC services for Axioline
C++ Components

1. Open the header file of this ACF component and include the needed header file.

2. Add the namespace for the RSC service manager as used namespace.

3. Define variables:

4. Save the changes and open the *.cpp file. Here, subscribe the RSC service and read the

product name. The result of this read process has to be written to the log file.

5. Save and compile the C++ project.

6. Overwrite the shared object on the PLC

7. Restart the firmware processes and check if you can see the product name in the log file.

Arp::Io::Axioline::Services::IAcyclicCommunicationService::Ptr pAxioAcyclicCommunicationService;
Arp::Io::Axioline::Services::PdiParam AxioPdiParameters;
std::vector<uint8> vAxioPdiData;
bool xProductNameWritten = false;

15,4015,40

Demo 7: RSC services for Axioline
C++ Components

Manual for AXL F DI8/1 DO8/1 1H : 8670_en_03

15,4015,40

RSC service for Profinet
C++ Components

Demo

15,4015,40

Demo 8: RSC services for Profinet
C++ Components

1. Open the header file of the ACF component and include the needed header file.

2. Define variables:

3. Save the changes and open the *.cpp file. Here, subscribe the RSC service and read the

PN diagnostic data. The result of this read process has to be written to the log file.

4. Save and compile the C++ project.

5. Overwrite the shared object on the PLC

6. Restart the firmware processes and check if you can see the data in the log file.

Arp::Io::ProfinetStack::Controller::Services::IAcyclicCommunicationService::Ptr pPnioAcyclicCommunicationService;
Arp::Io::ProfinetStack::Controller::Services::RecordParam PnioRecordParameters;
std::vector<uint8> vPnioRecordData;
bool xPnioDiagDataWritten = false;

15,4015,40

Demo 8: RSC services for Profinet
C++ Components

https://www.plcnext.help/te/Service_Components/Remote_Service_Calls_RSC/RSC_PROFINET_Services.htm

Further information:

Manual for AXL F BK PN : 105731_en_05

15,4015,40

RSC services for device interface data
C++ Components

Demo

15,4015,40

Demo 9: RSC services for device interface data
C++ Components

1. Open the header file of the ACF component and include the needed header file.

2. Define the needed variables:

3. Save the changes and open the *.cpp file. Here, subscribe the RSC service and read the

firmware status. The result of this read process has to be written to the log file.

4. Save and compile the C++ project.

5. Overwrite the shared object on the PLC

6. Restart the firmware processes and check if you can see the firmware in the log file.

Arp::Device::Interface::Services::IDeviceInfoService::Ptr pDeviceInfoService;
RscString<512> Parameter;
RscVariant<512> DeviceInterfaceServiceData;
bool xDeviceInterfaceDataWritten = false;

15,4015,40

Demo 9: RSC services for device interface data
C++ Component

https://www.plcnext.help/te/Service_Components/Remote_Service_Calls_RSC/RSC_device_interface_services.htm

Further information:

15,4015,40

RSC service for GDS access
C++ Components

Demo

15,4015,40

Demo 10: RSC services for GDS access
C++ Components

1. Open the header file of the ACF component and include the needed header file.

2. Define the needed variables:

3. Save the changes and open the *.cpp file. Here, subscribe the RSC service and read the

result of the add operation. The result has to be written to the log file.

4. Save and compile the C++ project.

5. Overwrite the shared object on the PLC

6. Restart the firmware processes and check if you can see the result in the log file.

Arp::Plc::Gds::Services::IDataAccessService::Ptr pDataAccessService;
RscString<512> PortName;
Arp::Plc::Gds::Services::ReadItem PortData;
Arp::Plc::Gds::Services::ReadItem prevPortData;

15,4015,40

Further information
C++ Components

E-Learning to ACF Component and Axioline RSC service >> Link

Program Library Manager (PLM) >> Link

Application Component Framework (ACF) >> Link

General information to RSC services
>> Link1
>> Link2

Axioline RSC service >> Link

Profinet RSC service >> Link

Device Information Service >> Link

GDS access via RSC service >> Link

15,4015,40

 Node RED

 MQTT

 DOCKER

Tools
PLCnext Technology limitless Automation

126

15,4015,40

Node RED

127

15,4015,40

The new era of automation

PLCnext Technology – MQTT examples

15,4015,40

 General introduction to MQTT

 MQTT with Node-RED

 Subscribe data from a public broker

 Publish data to a public broker

 MQTT with Python

 Installation of the paho-mqtt library

 Subscribe data from a public broker

 Publish data to a public broker

 MQTT in IEC61131 (preview)

 PLCnext Control as MQTT broker

 Q&A

Agenda
C++ Components

15,4015,40

 TCP/IP message protocol for machine-to-machine communication

 Published in 1999 by IBM

 Standard since 2014

 Uses a publish-subscribe messaging pattern

 Client connects to a server which is called „broker“

 Client can publish or subscribe information

 The broker distributes a message to any client with a subscription.

MQTT (Message Queuing Telemetry Transport)
MQTT examples

15,4015,40

Example of an MQTT connection
MQTT examples

brokerClient A Client B: Temperature sensor

Publish to topic: tank/temp
Value: 23 °C

Publish topic: tank/temp
Value: 23 °C

Connect

Subscribe topic: tank/temp

Disconnect

15,4015,40

Multiple subscriptions
MQTT examples

brokerPublish to topic: tank/temp
Value: 23 °C

23°C

23°C

15,4015,40

 Determines how the message is sent

 0: „at most once“  message is sent without acknowledgement of the receiver

Quality of Service (QoS)
MQTT examples

broker
Publish to topic: tank/temp
Value: 23 °C

QoS 0

15,4015,40

 Determines how the message is sent

 0: „at most once“  message is sent without acknowledgement of the receiver

 1: „at least once“  message is sent at least once, with acknowledgement

Quality of Service (QoS)
MQTT examples

broker

Publish to topic: tank/temp
Value: 23 °C

QoS 1

PUBACK
publish

acknowledgement

15,4015,40

 Determines how the message is sent

 0: „at most once“  message is sent without acknowledgement of the receiver

 1: „at least once“  message is sent once, with acknowledgement

 2: „exactly once“  2-level handshake between sender and receiver to ensure that
only one message is received

Quality of Service (QoS)
MQTT examples

Publish to topic: tank/temp
Value: 23 °C

QoS 2

PUBREC
publish receive

PUBREL
publish release

PUBCOMP
publish complete

broker

15,4015,40

 General introduction to MQTT

 MQTT with Node-RED

 Subscribe data from a public broker

 Publish data to a public broker

 MQTT with Python

 Installation of the paho-mqtt library

 Subscribe data from a public broker

 Publish data to a public broker

 MQTT in IEC61131 (preview)

 PLCnext Control as MQTT broker

 Q&A

Agenda
C++ Components

15,4015,40

 PLCnext Control with Node-RED

 Steps for installation via docker:

https://www.plcnext-community.net/en/hn-makers-blog/481-node-red-and-getting-
started-with-docker.html

https://www.plcnext-community.net/en/hn-makers-blog/482-node-red-with-docker-tips-
and-best-practice.html

 Steps for offline installation:

https://www.plcnext-community.net/en/hn-makers-blog/418-install-node-red-and-pm2-
offline.html

Required hardware and installations
MQTT examples

15,4015,40

MQTT with Node-RED
MQTT examples

Demo

CK3

Slide 138

CK3 Christiane Kownatzki, 10/12/2020

15,4015,40

 Task: In this example of a Node-RED flow, a string value should be
subscribed and published via MQTT.

 The topic name is: MyHome/LivingRoom/Light.

 The payload string can be: “1” or “0”.

Example: Publish and subscribe topics in one flow
MQTT examples

15,4015,40

 General introduction to MQTT

 MQTT with Node-RED

 Subscribe data from a public broker

 Publish data to a public broker

 MQTT with Python

 Installation of the paho-mqtt library

 Subscribe data from a public broker

 Publish data to a public broker

 MQTT in IEC61131 (preview)

 PLCnext Control as MQTT broker

 Q&A

Agenda
C++ Components

15,4015,40

1) Download the paho-mqtt library: https://pypi.org/project/paho-mqtt/#files

2) Transfer the*.tar.gz file to your PLCnext Control, e.g. via WinSCP.

3) Extract the file with the command:

4) Login as root user.

5) Move the source files to the Python3.8 library folder:

Installation of paho-mqtt
MQTT examples

tar –xf paho-mqtt-<version>.tar.gz

mv paho-mqtt-<version>/src/paho /usr/lib/python3.8/

15,4015,40

1) Install the Python package manager PIP as described here:

https://www.plcnext-community.net/en/hn-makers-blog/425-installing-pip-without-ipkg.html

2) User the following command to install paho-mqtt via PIP:

Alternative installation of paho-mqtt
MQTT examples

pip install paho-mqtt

15,4015,40

Python code creation
MQTT examples

…

Useful information and examples can be found here, for example:

 https://pypi.org/project/paho-mqtt/
 https://github.com/eclipse/paho.mqtt.python/tree/master/examples

15,4015,40

MQTT with Python
MQTT examples

Demo

15,4015,40

MQTT examples

Execute the python script

Setup the communication to broker

Define topic and quality of service level

Value changes will be displayed, incl. time

15,4015,40

MQTT examples

Execute the python script

Setup the communication to broker

Define topic, QoS, retain and payload

15,4015,40

 General introduction to MQTT

 MQTT with Node-RED

 Subscribe data from a public broker

 Publish data to a public broker

 MQTT with Python

 Installation of the paho-mqtt library

 Subscribe data from a public broker

 Publish data to a public broker

 MQTT in IEC61131 (preview)

 PLCnext Control as MQTT broker

 Q&A

Agenda
C++ Components

15,4015,40

Preview IEC61131 MQTT library
MQTT examples

Preview

MQTT function block
with different methods

15,4015,40

Preview IEC61131 MQTT library
MQTT examples

Demo

Preview

15,4015,40

 General introduction to MQTT

 MQTT with Node-RED

 Subscribe data from a public broker

 Publish data to a public broker

 MQTT with Python

 Installation of the paho-mqtt library

 Subscribe data from a public broker

 Publish data to a public broker

 MQTT in IEC61131 (preview)

 PLCnext Control as MQTT broker

 Q&A

Agenda
C++ Components

15,4015,40

 lightweight open source message broker

 implements MQTT versions 3.1.0, 3.1.1 and version 5.0

 free of charge for everyone (and business-friendly licensing thanks to EPL/EDL)

 Available for Linux and Windows systems

Mosquitto broker
MQTT examples

Documentation: https://mosquitto.org/documentation/
Github: https://github.com/eclipse/mosquitto

15,4015,40

1) Create a PuTTY session

2) Login as root

3) Use the following command to install mosquitto:

4) Restart balenaEngine:

5) Start mosquitto:

Installation of the mosquitto broker via docker
MQTT examples

balena-engine run –it –-name mosquitto –p 1883:1883 eclipse-mosquitto

/etc/init.d/balena stop

/etc/init.d/balena start

balena-engine start mosquitto

15,4015,40

1) Open the container console:

2) Change to the mosquitto directory:

3) Create a new password file and your first user:

4) Enter the password twice (It will be stored within the file in encrypted form)

* To create further users enter:

Creation of a new user
MQTT examples

mosquitto_passwd -c passwordfile <Username>

mosquitto_passwd -b passwordfile <Username> <Password>

cd /mosquitto

balena-engine exec –it mosquitto /bin/sh

15,4015,40

1) Change the directory:

2) Open the mosquitto.config file in the vi editor:

3) Press “G” to jump to the file end (+)

4) Add the following two lines:

5) Safe and close the file with: , then + + , then

6) Close the container console with:

7) Restart the mosquitto broker

Make password file known
MQTT examples

allow_anonymous false
password_file /mosquitto/passwordfile

cd /config

vi mosquitto.conf

exit

Esc : w q Enter

 G

15,4015,40

PLCnext Control as MQTT broker
MQTT examples

Demo

15,4015,40

Some alternatives
MQTT examples

See: https://www.plcnextstore.com/#/

15,4015,40

Docker Docker.com Balena engine ¿Qué es?

157

15,4015,40

01.- ¿Que es Docker? Y ¿Realmente lo necesito? 🤔 [Tutorial en Español]

158

15,4015,40

Crear contenedores Windows y Linux en Docker Desktop

159

15,4015,40

Elevator Control System based on PLCnext Technology

PLCnext Engineer
Selección y nivel Básico

160

15,4015,40

PLCnext Technology PROJECTS …. Applications of Products

161

15,4015,40

PLCnext Engineer Selección y Nivel Básico
PLCnext Engineer

